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Abstract

Background: Reliable measurement of perioperative pain is still an ongoing problem. Pain monitors are 
commercially available, but to date are not commonly used clinically. Anspec-Pro was developed as a new pain 
monitor device by Ghent University in 2018. The validation study compared this monitor to the commercially 
available and validated MedStorm pain monitor. Although the results were comparable with the validated 
monitor, the absolute results were debatable.
Objectives: The data were reanalyzed by means of artificial intelligence (AI), examining the correlation and 
prediction between the measured data and clinical parameters, to explore if this delivers complementary 
information that assists pain assessment.
Design and setting: A cohort study at Ghent University Hospital. 
Methods: During two monitoring periods, data were collected from patients while measuring pain with Anspec-
Pro. Patients were monitored in the preoperative period and during their postoperative recovery. Measurements 
by Anspec-Pro were processed with AI, more specifically with a convolutional neural network (CNN), and 
classified into pain classes. CNN’s were trained both with offline (training prior to monitoring) and online 
(offline training followed by real-time retraining with incoming data) training methods. Performance was 
assessed with Receiver Operating Characteristic (ROC) curves. 
Main outcome measures: Pain values as quantified by Anspec-Pro and NRS values as reported by the patients. 
Results: Data from 11 patients were used for analysis. Good device performance was seen with offline training 
with all data and with online retraining every seven minutes with device output and an NRS from the last seven 
minutes. 
Conclusions: CNN online training with recent patient data led to good algorithm performance. Hence, our 
results indicate that there is a potential for AI to deliver useful information that can be used in complementary 
models of monitoring devices. 
Trials registration: At clinicaltrials.gov (Identifier: NCT03832764).
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Introduction

The development of pain monitoring devices is a 
hot topic in today’s clinical research. It may bring 
meaningful opportunities in the perioperative 

setting, including helping to control intraoperative 
stress responses, preventing postoperative pain and 
the development of closed-loop systems for the 
administration of analgesics1. This is particularly 
the case since perioperative pain is associated with 
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was concluded that Anspec-Pro and MedStorm 
had a similar performance because there was no 
significant difference in the AUC (Area Under the 
Curve) of their ROC curves. However, the absolute 
results pointed to a poor performance since both 
ROC curves had an AUC near 0,518. Therefore, the 
data collected with Anspec-Pro were reanalyzed, 
quantifying pain in another way, i.e. the use of 
Artificial Intelligence (AI) for processing the data 
monitored with Anspec-Pro. Furthermore, an 
attempt is made to achieve a more individualized 
pain assessment by recalibration of the AI algorithms 
with patient specific data. If AI could detect changes 
in tissue bioimpedance which correlate to NRS 
and if these changes would occur earlier than the 
reported NRS, projections could be made upon the 
expected pain levels in the near future and a more 
suitable pain management could be applied.

AI is defined by Kaplan and Haenlein as ‘a 
system’s ability to correctly interpret external data, 
to learn from such data, and to use those learnings 
to achieve specific goals and tasks through flexible 
adaptation’19. Depending on the specific system, AI 
can use cognitive, emotional and social intelligence 
to fulfill these tasks. Interest in AI systems is rapidly 
increasing and they are used widely in business, 
education and other parts of society. Its added value 
has clearly been demonstrated in daily life19.

Our objectives are to examine if data analysis 
with AI can deliver complementary information that 
can lead to a more accurate pain assessment.
 
Methods

Data were extracted from the original trial, a cohort 
study conducted at Ghent University Hospital 
between 24 April 2018 and 22 June 2018. This 
study was approved by the Ethics Committee of 
Ghent University Hospital (Address: Corneel 
Heymanslaan 10, 9000 Ghent Belgium; Protocol 
code: EC/2017/1517; Chairperson: prof. dr. D. 
Matthys; Date of approval: 13 February 2018) 
and written informed consent was obtained from 
all subjects participating in the trial. The trial 
was registered at clinicaltrials.gov (Identifier: 
NCT03832764, principal investigator: Martine 
Neckebroek, February 6, 2019). This manuscript 
adheres to the applicable STROBE guidelines. More 
information about patient enrollment, inclusion and 
exclusion criteria and randomization can be found in 
our previous publication18.

Pain was assessed at two distinct moments: before 
surgery in the waiting room (monitoring during 14 
minutes) and after surgery in the Post Anesthesia 
Care Unit (PACU) (monitoring during 140 minutes). 
Pain was measured in two ways: continuously with 

higher morbidity, leading to prolonged hospital stay 
and higher healthcare costs2. 

The International Association for the Study of 
Pain (IASP) defines pain as ‘an unpleasant sensory 
and emotional experience associated with, or 
resembling that associated with, actual or potential 
tissue damage’. They emphasize its individual 
and subjective nature and the dissimilarity with 
nociception, i.e. the process in the nerve system to 
process a pain stimulus3,4. This subjective nature 
is a major problem in the quantification of pain. 
In contrast, nociception and the physiological 
responses to it (e.g. spinal reflexes and autonomic 
responses, including changes in heart rate, vasomotor 
tonus, respiratory rate and pupillary diameter) are 
objective1,5.

Pain quantification depends on the patients level 
of consciousness. In awake patients, we use self-
report with scoring systems like Numeric Rating 
Scale (NRS) or Visual Analogue Scale (VAS)6,7.
In anesthetized patients, we largely depend on 
monitored variables and clinical observations, e.g. 
hypertension, tachycardia, hyperventilation and 
movement.8 Scoring systems have been developed 
for this purpose6,9,10.

Commercially available pain monitoring 
devices are largely based on the measurement of 
physiological responses to nociception, including 
an increased hart rate, peripheral vasoconstriction, 
pupillary dilation and increases in skin conductance1. 
Examples of existing monitoring devices are 
Analgesia Nociception Index (Mdoloris Medical 
Systems, Loos, France), MedStorm (MedStorm 
innovations AS, Oslo, Norway), AlgiScan 
(IDMed, Marseille, France), Nociceptive Flexion 
reflex TreShold (NFTS) Paintracker (Dolosys 
GmbH, Berlin, Germany), Surgical Pleth Index 
(GE Healthcare, Helsinki, Finland), qCON 2000 
monitor (Quantium Medical, Barcelona, Spain) 
and Nociception Level Index (NOL) (Medasense, 
Ramat Gan, Israel)1,11-14. However, these devices 
are not widely used because of inconclusive study 
results, lack of clinical studies, confounding factors 
or complex set-up1,11.

Anspec-Pro is a new pain monitoring device 
developed by Ghent University. It is based on the 
measurement of changes in skin impedance. This 
method can also be found in the MedStorm pain 
monitor. The innovative part is that the emitted 
signal consists of 29 frequencies instead of one 
single frequency, as is the case with MedStorm. 
This leads to more data available for analysis and 
possibly a better estimate of pain15-17.

It was previously studied in one cohort study 
with awake, postoperative patients, where it was 
compared to the MedStorm pain monitor18. It 
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the monitoring device and intermittently by asking 
the patient to report an NRS value every seven 
minutes. 

Primary outcome parameters were, as in the first 
study, postoperative pain scores, i.e. pain values 
as quantified by Anspec-Pro and NRS as reported 
by the patient. Secondary end points were vital 
parameters (heart frequency (HF) and mean arterial 
pressure (MAP)) and assessment of subjective 
conditions like alertness, agitation, well-being, 
energy level and nausea. Other factors that were 
registered to take into account for interpretation 
of the results were Glasgow Coma Scale (GCS), 
patient movements, location of the electrodes (left 
or right hand), administered drugs (with time and 
dose) and the patient’s medical history.

The pain monitoring devices used in this study 
are based on the measurement of changes in skin 
impedance. The underlying physiological principle 
is the fact that emotional sweating, which can be 
caused by pain, is activated by sympathetic nerves 
in the skin. Each time these skin sympathetic nerves 
are activated, palmar and plantar sweat glands are 
filled up and skin conductance increases. Next, the 
sweat is reabsorbed and skin conductance decreases 
again. This causes changes in skin conductance.

The Anspec-Pro pain monitor is a new monitoring 
device that was developed by Research Group 
DySC (Dynamical Systems and Control) at Ghent 
University. It quantifies pain by measuring changes 
in skin conductance after emitting a signal, just like 
the MedStorm pain monitor. The innovative part 
of Anspec-Pro is that the emitted signal consists 
of 29 distinct frequencies between 100 Hz and 
1500 Hz with 50 Hz intervals, whereas other pain 
monitors like MedStorm emit only one frequency. 
This method is based on the fact that frequency 
affects pain detection, because each tissue molecule 
has a different response to a given frequency. The 
measurement requires three electrodes connected to 

the palmar skin, as shown in Figure 1. In our previous 
analysis, Anspec-Pro measurements were used to 
calculate a value of the complex skin impedance, 
which would correlate with pain intensity15-17.

In our new analysis, data collected with Anspec-
Pro were reanalyzed and pain quantification was 
done in a different way, with the aim of obtaining 
complementary information that could possibly lead 
to a more accurate pain assessment.

For this purpose, an AI algorithm classified 
pain by analyzing Anspec-Pro’s measurements. In 
this study, deep learning is used, a part of AI that 
uses artificial neural networks to mimic the human 
brain, with a convolutional neural network (CNN), 
an artificial neural network commonly used for the 
analysis of visual data. Spectrograms displaying the 
spectrum of the electrical power (the rate at which 
electrical energy is transferred) of the skin as a 
function of time and emitted frequency are used as 
input for the CNN (Figure 2). These spectrograms 
are generated with the data collected with Anspec-
Pro. More information on the generation of 
spectrograms can be found in Ghita et al.16

Fig. 1 —  Clinical set-up of Anspec-Pro.
Anspec-Pro is connected to the patient with three electrodes 
that are placed at the palm of the hand. One electrodes emits 
the signal and the other two detect the signal. Anspec-Pro is 
further connected to a laptop that processes and displays the 

measurements (Figure obtained from Neckebroek et al.18).

Fig. 2 —  Example of two spectrograms generated at moments that differ 
in pain intensity.We generate a spectrogram by displaying the spectrum of 
the electrical power of the skin as a function of time and emitted frequency 
over one second. The x-axis represents time, the y-axis represents the emitted 
frequency. The color code displays the ratio of power over emitted frequency. 
There is a clear difference between the two spectrograms that were generated 
at moments that differ in pain intensity (NRS 2 versus NRS 9) in the same 

patient. NRS – Numeric Rating Scale.
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is updated after learning from each individual input 
to the system. In our online training algorithms, 
the CNN was first trained offline with subset I 
(the subset of patients with the best correlation 
between the Anspec-Pro index and the reported 
NRS), before starting patient monitoring (i.e. 
testing with the remaining data). Then, during 
patient monitoring, patient-specific spectrograms 
delivered by Anspec-Pro and NRS values reported 
by the patient were used in real-time to retrain the 
CNN, to individualize pain assessment. A fixed part 
of the CNN was always kept unchanged throughout 
the retraining to keep the CNN from becoming 
unfavorable sensitive to the individual patient. 
Summarized, in online training, algorithms that 
have a self-learning ability when new information 
is presented are used. Three algorithms were used 
for online retraining.

In the first online retraining algorithm, the 
preoperative data were used for retraining. Ten 
spectrograms with the accompanying NRS value 
were randomly selected from to preoperative 
dataset to partly retrain the CNN before starting the 
postoperative monitoring. During the postoperative 
monitoring, no retraining occurred.

In the second algorithm, the CNN was retrained 
with cumulative data from all past spectrograms, 
leading to a larger and larger dataset for training. 
The CNN was retrained every seven minutes, when 
a new NRS value was reported by the patient and 
linked to all spectrograms generated in this period.
In the third algorithm, the CNN was, similarly to the 
second algorithm, retrained every seven minutes 
when a new NRS value was reported, but instead 
of keeping all collected data, only the data from the 
last seven minutes were used for retraining.

Statistical analysis 

Performance of the CNN’s was evaluated by using 
ROC (Receiver Operating Characteristic) curves. 
The ROC curves were built using sensitivity (true 
positive predicted value rate) and false-positive rate:

sensitivity = true positive/positive
false positive rate = 1 – specificity = 1 – (true 

negative/negative)

where true positive is the number of correctly 
predicted occurrences of the specific class, positive 
is the number of the genuine occurrences of the 
class, true negative is the number of correctly 
predicted absences of the specific class and negative 
is the number of genuine occurrences of different 
classes to the specific one. An AUC (Area Under 
the Curve) of 0,5 would mean the CNN is randomly 
guessing the pain class, an AUC of 1 means that 
every spectrogram would be classified correctly. An 

In this analysis, pain intensity was categorized into 
four pain classes, instead of reporting single NRS 
values. These classes are: (I) no pain (NRS 0 – 1), 
(II) mild pain (NRS 2 – 3), (III) moderate pain 
(NRS 4 – 6) and (IV) severe pain (NRS 7 – 10). In 
future research, a bigger number of classes could 
be used to describe pain intensity more precisely.

In this deep learning algorithm, spectrograms 
were classified in pain classes by linking them 
to the NRS value reported at the same moment. 
Throughout the training of the CNN, the pain 
intensity predicted by the CNN is compared to the 
reported NRS value and subsequently the algorithm 
is adjusted to achieve a prediction as accurate as 
possible. This way, the CNN is trained to classify 
the spectrograms into pain classes. Both offline and 
online training algorithms were used.

In offline training, the training data are first 
collected over certain period of time. After 
collection of these training data, the AI model is 
trained with them. After training and during the 
use, the AI model is not updated anymore with 
the new data that it is presented with, it can’t learn 
anymore. In our trial, the CNN was trained with 
several subsets of the complete postoperative 
dataset collected with Anspec-Pro. These subsets 
were: (I) the patients with the best correlation 
between the Anspec-Pro index and the reported 
NRS in our previous analysis, (II) the patients 
with the worst correlation between the Anspec-
Pro index and the reported NRS in our previous 
analysis, (III) all patients, (IV) the first 25% of 
data of all patients, (V) the first 50% of data of 
all patients and (VI) the first 75% of data of all 
patients. These distinct subsets were used in order 
to check if using less data for training would affect 
the accuracy of pain predictions. In this training, 
each spectrogram was presented multiple times to 
the CNN for providing sufficient training. After 
finishing the training, the CNN was tested with the 
remaining data that weren’t used for the training; 
for subset III (training with all data), the CNN was 
tested with the same data as used for training. A 
new spectrogram was generated from the test data 
every minute and presented to the CNN, resulting 
in 140 estimated pain levels for each test patient 
(one per minute). A mean value was calculated 
from seven consecutive estimates, firstly to lower 
the impact of outliers and secondly to be able to 
compare the result to the NRS values that were 
reported only every seven minutes (unlike the 
continuous monitoring by Anspec-Pro).

In online training, the data that are acquired over 
time can be used to update the AI model in real-
time, at the moment that data are obtained. In other 
words, learning occurs as data come in. The model 
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AUC above 0,8 was considered a successful result.
In addition, a confusion matrix is presented for 
some of the CNN’s. A confusion matrix is a table 
used to visualize the performance of an algorithm 
in deep learning, more specifically in statistical 
classification. The rows represent the reported pain 
classes and the columns represent the predicted 
pain classes. The shown number is the number of 
times that the CNN classifies a spectrogram f from 
the reported pain class in the predicted pain class.

Results

The inclusion of patients started on 24 April 
2018. Of all patients screened and included in the 
trial, eleven were assigned to the arm monitored 
with Anspec-Pro. Data collected in this arm were 
reanalyzed. Our previous publication displays an 
extensive description of the original inclusions.18 
Demographics and other characteristics of the 
Anspec-Pro arm are shown in Table I.
The CNN’s ability to classify pain intensity into 
the proper pain class was evaluated by building 
ROC curves.

First, the ROC curves for the CNN’s trained 
offline with six distinct subsets of data were 
composed (Figure 3A and Figure 4). The best 
performing CNN is the one trained with all 
available data (subset III), attaining an AUC above 
0,88 for all pain classes (Figure 3A). Furthermore, 

the confusion matrix for this CNN shows a 
predominantly correct classification in pain classes, 
illustrated by the highest number of predictions in 
the diagonal (Figure 3B). 

The performance of the other offline trained 
CNN’s is remarkably lower. Training with subset 
I, the patients with the best correlation between 
Anspec-Pro and NRS, shows ROC curves with an 
AUC close to 0,5 for all pain classes, indicating 
a weak performance (Figure 4B). Training with 
subset II, the patients with the worst correlation 
between Anspec-Pro and NRS, displays similar 
ROC curves and AUC values (Figure 4A). Training 
with subset IV, the first 25% of data of all patients, 
shows better ROC curves with all AUC values 
above 0,5 and even an AUC above 0,8 for severe 
pain, however, for the other pain classes, AUC 
values remain below 0,8 (Figure 4C). Training 
with subset V, the first 50% of data of all patients, 
shows variable results, but all pain classes have 
an AUC below 0,8 (Figure 4D). For training with 
subset VI, the first 75% of data of all patients, AUC 
values vary between 0,5 and 0,8 (Figure 4E).

The ROC curves for the online retraining 
algorithms are shown in Figure 5A-C. For the 
first algorithm, the AUC is below 0,5 for mild and 
moderate pain and between 0,66 and 0,7 for no pain 
and severe pain (Figure 5A). The confusion matrix 
shows that mild and moderate pain are frequently 
underestimated in this algorithm (Figure 5D). 
In the second algorithm, a limited improvement 
can be seen for the AUC for mild and moderate 
pain (AUC = 0,62) and for no pain and severe 
pain (AUC between 0,71 and 0,74) (Figure 5B). 
The third algorithm has the best results with an 
AUC above 0,81 for all pain classes (Figure 3C) 
and predominantly correct classifications in the 
confusion matrix (Figure 5F).

Discussion

In this study, the data from our previous trial were 
reanalyzed using AI for pain classification, to explore 
if this can deliver complementary information that 
aids in better pain assessment. 

In a first phase, training occurred offline. An AUC 
of at least 0,8 for every pain class was only seen 
when the CNN was trained with all available data 
and tested with the same data. This could possibly 
lead to overfitting of the CNN to the training data, 
with the risk of declining performance when new 
data are presented for pain classification. When 
the CNN was trained with smaller datasets, AUC 
values were lower than 0,8 and often even close to 
0,5. From a clinical point of view, this means that, 
in this analysis with this population, offline training 

Table I. — Patients characteristics and clinical data.

Characteristic Anspec-Pro (n = 11)
Biometric data

Age (y) 34,90 (12,46)
Height (cm) 167,45 (10,01)
Weight (kg) 69,72 (13,38)

BMI (kg.cm-2) 24,81 (4)
Gender n (%)

Male 1 (9,1)
Female 7 (63,6)

Transgender male 3 (27,3)
Surgery type n (%)

ORL 3 (27,3)
Abdominal 2 (18,2)

Gynecology/Urology/Orthopedics 5 (45,5)
Breast surgery 1 (9,1)

ASA class n (%)
I 3 (27,3)
II 8 (72,7)
III 0

Values are mean (SD), respectively count (%) from total number 
of patients of the Anspec-Pro group; Abbreviations: BMI – Body 
Mass Index; ORL – Otorhinolaryngology; ASA – American Society 
of Anesthesiologists physical status.
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Fig. 3 —  Performance of the CNN trained offline with all data. 
(A) Receiver operating characteristic (ROC) curves and area under the curves (AUC) shown for each pain class. For all pain classes, 
an AUC above 0,86 is obtained, which is considered a good result. The drawback of this AI algorithm is that it was trained and tested 
with the same data. This could possibly lead to overfitting of the CNN to the training data, with the risk of declining performance when 

new data are presented for pain quantification.

Fig. 4 —  Receiver Operating Characteristic (ROC) curves with Area Under the Curve (AUC) for the other offline trained CNN’s.
(A) CNN trained with data from the patients with the worst correlation between the Anspec-Pro index and the reported NRS in the first 
analysis. The low AUC values correlate with bad performance of this AI algorithm. (B) CNN trained with data from the patients with 
the best correlation between the Anspec-Pro index and the reported NRS in the first analysis. The low AUC values correlate with bad 
performance of this AI algorithm. (C) CNN trained with the first 25% of data of all patients. Only class 4 (severe pain) has an AUC 
above 0,8, other classes don’t. This means that this AI algorithm can only be trusted when it indicates severe pain in the patient. (D) 
CNN trained with the first 50% of data of all patients. All AUC values are below 0,8, correlating with insufficient performance of this 
AI algorithm. (E) CNN trained with the first 75% of data of all patients. All AUC values are below 0,8, correlating with insufficient 

performance of this AI algorithm. AUC – Area Under the Curve.

alone was insufficient to quantify pain accurately 
in ‘unknown’ monitored patients. 

In a second phase, real-time online training 
was provided. With the first algorithm, the AUC 
values for mild and moderate pain were close to 
0,5 with predominantly an underestimation of pain. 
A possible explanation could be that the CNN was 
retrained with data obtained at a moment without 

pain and thus would underestimate pain in the 
following period. A slightly better performance 
was seen with the second algorithm, but the AUC 
values for mild and moderate pain remained 
rather low. With the third algorithm, specificity 
and sensitivity for classification of pain sharply 
increased, with AUC values above 0,8 for all pain 
classes. 
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The good performance of online training algorithm 
3 could offer an opportunity to develop a reliable 
device for the continuous monitoring of awake and 
cooperative patients. In our trial, NRS reporting 
and retraining occurred every seven minutes, but in 
clinical practice, this could be done at any moment 
the patient reports an NRS value. This raises the 
question at what time interval, between the reported 
NRS values, the performance starts to decline. This 
is particularly important because if this interval 
would be too short, the input of NRS values could 
be labor intensive and compromise the use of the 
algorithm. Future research could focus on device 
performance as a function of the time interval since 
the last reported NRS value. Another limitation we 
make with this algorithm is that it can only be used 
in the postoperative period and not during surgery in 
a sedated patient, since the patient needs to be able 
to report NRS values for the online training.

Some factors that can attenuate the performance 
of Anspec-Pro (and MedStorm) can be identified. 
Sympathetic tone is not only affected by pain, but by 
multiple other factors too, e.g. emotions, awaking 
after anesthesia, fluid balance or age dependent 
changes in autonomic tone. All of these can affect 
sympathetic tone and thus lower specificity for pain. 
On the other hand, pain is defined as a personal 

experience and this experience could differ between 
individuals even after the same pain stimulus. 
This way, measuring sympathetic tone rather than 
nociception could offer an advantage by possibly 
taking the emotional aspects of pain in a conscious 
patient into account. 

Since this was a proof of concept study, 
only a small dataset was available for analysis. 
Nevertheless, it can be concluded that there is a 
large interindividual variability in pain responses, 
which limits the potential use of offline training 
algorithms. This is shown in this analysis by the 
fact that offline training only resulted in a good 
performance when the device was trained and 
tested with the same data. Future research could 
focus on how big a training population needs to 
be to train a reliable offline trained device or could 
examine if performance of an offline trained device 
is better when trained and used in particular patient 
populations. However, even with big training 
populations, the question remains if offline training 
alone will ever be sufficient to develop a reliable 
device for monitoring of big populations.

On the other hand, a considerable intra-
individual variability exists, as shown by the worse 
performance of online retraining algorithm two 
compared to algorithm three. This indicates the need 
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Fig. 5 —  Performance of the online retrained CNN’s presented by Receiver Operating Characteristic (ROC) curves with Area Under 

the Curve (AUC) and confusion matrices.
(A,D) ROC curves with AUC and confusion matrix for the CNN retrained using algorithm 1 (retraining with preoperative data). 
All AUC values are below 0,8, correlating with insufficient performance of this AI algorithm. This is most outspoken for the pain 
classes mild and moderate pain, as shown by AUC values below 0,5. The confusion matrix makes clear that in these classes, pain is 
predominantly underestimated. A possible explanation could be that the CNN was retrained with data obtained at a moment without pain 
and thus would underestimate pain in the following period. (B,E) ROC curves with AUC and confusion matrix for the CNN retrained 
using algorithm 2 (retraining with all postoperative data). All AUC values are below 0,8, correlating with insufficient performance 
of this AI algorithm. (C,F) ROC curves with AUC and confusion matrix for the CNN retrained using algorithm 3 (retraining with 
postoperative data from the last seven minutes). For all pain classes, an AUC above 0,81 is obtained, which is considered a good result.

AUC – Area Under the Curve.
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general anesthesia - a new era in patient safety standards 
and healthcare management. Medicina (Kaunas) 2021; 
57(2):132.

15. Ghita M, Ghita M, Copot D, Neckebroek M and Ionescu 
CM. Experimental measurement of pain stimulus effects 
in skin impedance. In: 2019 22nd International Conference 
on Control Systems and Computer Science (CSCS). IEEE 
2019;507–14.

16. Ghita M, Neckebroek M, Juchem J, Copot D, Muresan CI 
and Ionescu CM. Bioimpedance sensor and methodology 
for acute pain monitoring. Sensors (Basel) 2020; 
20(23):6765.

17. Ghita M, Jalilian N, Copot D, Ionescu CM and 
Neckebroeck M. Modeling and Analysis of Monitored vs. 
Self-reported Postsurgical Acute Pain in a Clinical Trial. 
IFAC-PapersOnLine 2021; 54(15):67-72.

18. Neckebroek M, Ghita M, Ghita M, Copot D and Ionescu 
CM. Pain detection with bioimpedance methodology 
from 3-dimensional exploration of nociception in a 
postoperative observational trial. J Clin Med 2020; 
9(3):684.

19. Kaplan A and Haenlein M. Siri, Siri, in my hand: Who’s 
the fairest in the land? On the interpretations, illustrations, 
and implications of artificial intelligence. Bus Horiz 2019; 
62(1):15-25.

for continuous real-time retraining with recent data, 
which is possible in cooperative patients.

Furthermore, this population contains a large 
variety of surgical procedures, decreasing the 
similarity of the subjects of this already small 
population. Additionally, the presence of three 
transgender males in the population is noted, making 
it less representative of the general population.

It should be mentioned that at this moment, a scale 
to express pain intensity as assessed by Anspec-Pro 
has not been developed yet. In this analysis, pain 
intensity was categorized into four classes (no 
pain, mild pain, moderate pain and severe pain). 
In future research, there is a possibility to expand 
this classification and narrow the classes in order to 
describe the measured pain intensity more precisely. 

We mentioned that if the changes in tissue 
bioimpedance that are detected with AI would occur 
earlier than the reported NRS, projections could be 
made upon expected pain levels in the near future. 
However, this analysis does not provide sufficient 
information to draw conclusions upon this topic. 
This predictive aspect needs further exploration in 
future research.

To conclude, our results indicate that there is 
potential for AI to deliver useful information that 
can be used in complementary models of monitoring 
devices. Additional research on this topic is highly 
recommended. 
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