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Abstract 

Background: The field of anesthesia has historically relied on manual administration, requiring anesthesiolgists 
to adjust dosages based on patient and surgical needs. With technological advancements, closed-loop systems 
have emerged to automate anesthesia administration, enhancing dosing accuracy, reducing workload, and 
improving patient safety. This scoping review investigates the application of closed-loop anesthesia across 
various clinical contexts, such as hypnosis, hemodynamic management, muscle relaxation, ventilation, and 
glucose control.
The review employs a comprehensive methodology, adhering to contemporary scoping review guidelines. A 
thorough search of databases and grey literature yields a diverse collection of studies. A total of 327 articles are 
assessed, with 121 articles meeting inclusion criteria. Various closed-loop controllers are employed, of which 
Proportional Integral Derivative (PID) is the most frequent.
In the context of hypnosis, closed-loop systems demonstrate improved time on target, performance, and reduced 
drug consumption. Similarly, in hemodynamics, closed-loop administration of fluids and vasopressors results 
in optimized blood pressure and heart rate control. Muscle relaxation studies highlight the role of closed-loop 
controllers in maintaining appropriate levels of neuromuscular blockade.
While closed-loop systems show promise in improving anesthesia delivery, manual intervention remains 
necessary due to the dynamic nature of surgical settings. The review underscores the potential benefits of closed-
loop anesthesia, including enhanced safety, reduced workload, and improved patient outcomes. However, the 
heterogeneity of study designs and applications necessitates cautious interpretation of findings. As technology 
continues to advance, refined closed-loop systems hold the potential to play an increasingly significant role in 
routine clinical anesthesia practice.

Keywords: Anesthesia, Anesthesia, General, Anesthesia, Intravenous, Neuro-muscular Blockade, Hypotension, 
Controlled.

Introduction

The administration of anesthesia products has 
historically relied on manual interventions, with 
anesthesiologists exercising their expertise to 
meticulously titrate the required dosage based on 
patient-specific factors and the nature of the surgical 
procedure. However, as technology continues to 
advance, there has emerged the capacity to automate 
certain aspects of anesthesia administration. This 
automation not only enhances dosing precision and 
monitoring but also alleviates the workload burden 
on anesthesiologists. Furthermore, it contributes 

to heightened safety levels by reducing errors and 
improving reproducibility1,2.

In recent years, there has been a growing interest 
in the full automation of anesthesia administration 
through closed-loop systems. These systems entrust 
algorithms with the responsibility of determining the 
appropriate drug dosages based on specific measured 
parameters. This development has ushered in a wide 
array of potential applications, spanning from the 
induction of hypnosis to the management of blood 
pressure and muscle relaxation, each necessitating 
distinct setups and algorithms. In this comprehensive 
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hemodynamic support. To maintain our focus 
exclusively on anesthesia practice, we excluded 
papers centered on other medical domains, such as 
intensive care. Additionally, theoretical or virtual 
studies and those confined to animal testing were 
excluded to ensure a concentration on the practical 
facets of closed-loop anesthesia administration. 
Furthermore, we excluded articles lacking free full-
text access in either English or Dutch, accessible 
through the KU Leuven or UZ Leuven libraries. 
Replies to prior articles were also omitted. 
Following the completion of our search, we opted 
to exclude papers published prior to the year 2000, 
as their contributions were deemed limited given 
the advancements in pharmacokinetic models and 
computational capabilities.

Our search for potential articles was conducted 
across several databases, including Medline 
(Pubmed), Embase, and Cochrane, with the final 
search executed on July 17, 2022. Grey literature 
was explored on clinicaltrials.gov and ICTRP. 
Our search strategy was informed by the guidance 

scoping review, our aim is to provide an extensive 
overview of the discoveries made in recent years, 
the frequently utilized devices, and the associated 
algorithms in the realm of closed-loop anesthesia 
administration.

Methods 

Before commencing our review, we formulated 
a protocol to guide our approach, which was up-
loaded on July 4, 2022, and is accessible at https://
osf.io/qv7ux3. This protocol, along with the ensuing 
scoping review, adheres rigorously to the latest 
guidelines governing scoping reviews, including 
those delineated in the PRISMA-SCR statement. 
A detailed PRISMA checklist is available in 
Appendix I4-8. Our inclusion criteria encompassed 
articles focused on closed-loop systems within the 
practice of anesthesia, particularly those comparing 
them to human operators. This encompassed 
a broad spectrum, including but not limited to 
depth of sedation, neuromuscular relaxation, and 

SECTION ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
    ON PAGE 

TITLE     
Title  1 Identify the report as a scoping review. 1 
ABSTRACT    
Structured summary 2 Provide a structured summary that includes (as applica- 2 

   ble): background, objectives, eligibility criteria, sources  
   of evidence, charting methods, results, and conclusions  
   that relate to the review questions and objectives.  

INTRODUCTION    
Rationale  3 Describe the rationale for the review in the context of 3 

   what is already known.  Explain why the review ques-  
   tions/objectives lend themselves to a scoping review ap-  
   proach.  

Objectives 4 Provide an explicit statement of the questions and objec- 3 
   tives being addressed with reference to their key elements  
   (e.g., population or participants, concepts, and context)  
   or other relevant key elements used to conceptualize the  
   review questions and/or objectives.  

METHODS    
Protocol and  regis- 5 Indicate whether a review protocol exists; state if and 3 
tration   where it can be accessed (e.g., a Web address); and if  

   available, provide registration information, including the  
   registration number.  

Eligibility criteria 6 Specify characteristics of the sources of evidence used as 3 
   eligibility criteria (e.g., years considered, language, and  

Information sources1 

 publication status), and provide a rationale.  
7 Describe all information sources in the search (e.g., 3 

   databases with dates of coverage and contact with au-  
   thors to identify additional sources), as well as the date  
   the most recent search was executed.  

Search  8 Present the full electronic search strategy for at least 1 3 
   database, including any limits used, such that it could be  
   repeated.  

Selection of sources 9 State the process for selecting sources of evidence (i.e., 4 
of evidence2  screening and eligibility) included in the scoping review.  
Data charting 10 Describe the methods of charting data from the included 4 
process3   sources of evidence (e.g., calibrated forms or forms that  

   have been tested by the team before their use, and  
   whether data charting was done independently or in du-  
   plicate) and any processes for obtaining and confirming  
   data from investigators.  

Data items 11 List and define all variables for which data were sought 4 
   and any assumptions and simplifications made.  

Critical appraisal of 12 If done, provide a rationale for conducting a critical ap- nil (4) 
individual sources of  praisal of included sources of evidence; describe the meth-  
evidence4   ods used and how this information was used in any data  

   synthesis (if appropriate).  
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of the 2Bergen University Hospitals of Leuven 
Libraries and underwent refinement through 
discussion. The search string encompassed Mesh 
terms (“anesthesia”, “closed loop”) and title and 
abstract searches ((“closed circuit” OR “closed 
loop”) AND (“anesthesia*” OR “anaesthesia*” 
OR “anesthestic*” OR “anaesthetic*” OR 
“hypnotic*”)). A total of 2805 articles were 
identified, subsequently deduplicated in EndNote 
to yield 1917 articles in total9. The final search 
strategy is included in Appendix III.

Following the deduplication process, all articles 
were imported into Rayyan.ai, which served as the 
platform for two independent reviewers to assess 
inclusion or exclusion based on predefined criteria10. 
Articles were blinded and individually categorized 
as “included,” “maybe,” or “excluded.” If an 
article was flagged as “included” by at least one 
reviewer without a corresponding “excluded” flag, 
it was ultimately included. Conversely, if an article 
was flagged as both “included” and “excluded,” 

efforts were made to achieve consensus between 
the reviewers. If consensus remained elusive, an 
independent third party was consulted. A flow 
chart detailing this selection process is provided 
in Figure 1.

Subsequent to the identification of all articles to be 
included, we embarked on the data charting process. 
To determine the variables worthy of extraction, we 
conducted an initial survey of several articles to 
gain insight into commonly reported outcomes and 
relevant variables. A solitary reviewer employed 
Microsoft Excel to develop an initial framework, 
drawing inspiration from a template provided by 
the Joanna Briggs Institute, which was subsequently 
adapted and iteratively refined7. A comprehensive 
version of the data charting file can be found in 
Appendix II.

The data items selected for inclusion spanned 
article characteristics (e.g., author, publication year, 
research type), surgery characteristics (e.g., surgical 
type), patient characteristics (e.g., quantity, age, 

JBI = Joanna Briggs Institute; PRISMA-ScR = Preferred Reporting Items for Systematic reviews and Meta-
Analyses extension for Scoping Reviews.

1Where sources of evidence (see second footnote) are compiled from, such as bibliographic databases, 
social media platforms, and Web sites.

2A more inclusive/heterogeneous term used to account for the different types of evidence or data sources 
(e.g., quantitative and/or qualitative research, expert opinion, and policy documents) that may be eligible in 
a scoping review as opposed to only studies. This is not to be confused with information sources (see first 
footnote). 3The frameworks by Arksey and O’Malley (6) and Levac and colleagues (7) and the JBI guidance 

(4, 5) refer to the process of data extraction in a scoping review as data charting.
4The process of systematically examining research evidence to assess its validity, results, and relevance 
before using it to inform a decision. This term is used for items 12 and 19 instead of “risk of bias” (which 
is more applicable to systematic reviews of interventions) to include and acknowledge the various sources 
of evidence that may be used in a scoping review (e.g., quantitative and/or qualitative research, expert 

opinion, and policy document).
From: Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D, et al. PRISMA Extension for
Scoping Reviews (PRISMAScR): Checklist and Explanation. Ann Intern Med. 2018;169:467–473. doi:

10.7326/M18-0850.

SECTION  ITEM PRISMA-ScR CHECKLIST ITEM REPORTED 
     ON PAGE 

Synthesis of results 13 Describe the methods of handling and summarizing the 4 
    data that were charted.  

RESULTS     
Selection of sources 14 Give numbers of sources of evidence screened, assessed 4 
of evidence   for eligibility, and included in the review, with reasons  

    for exclusions at each stage, ideally using a flow diagram.  
Characteristics of 15 For each source of evidence, present characteristics for 4 
sources evidence   which data were charted and provide the citations.  
Critical appraisal 16 If done, present data on critical appraisal of included nil (4) 
within  sources of  sources of evidence (see item 12).  
evidence      
Results of individual 17 For each included source of evidence, present the relevant 4 
sources of evidence  data that were charted that relate to the review questions  

    and objectives.  
Synthesis of results 18 Summarize and/or present the charting results as they 6 

    relate to the review questions and objectives  
DISCUSSION     
Summary of evi- 19 Summarize the main results (including an overview of 7 
dence    concepts, themes, and types of evidence available), link  

    to the review questions and objectives, and consider the  
    relevance to key groups.  

Limitations  20 Discuss the limitations of the scoping review process. 24 
Conclusions  21 Provide a general interpretation of the results with re- 25 

    spect to the review questions and objectives, as well as  
    potential implications and/or next steps.  

FUNDING     
Funding   22 Describe sources of funding for the included sources of 26 

    evidence, as well as sources of funding for the scoping  
    review. Describe the role of the funders of the scoping  
    review.  
 



244	 Acta Anaesth. Bel., 2024, 75  | Supll. 1

1.2. Requirements

For a closed-loop system to attain success, it 
must surmount specific challenges. A pertinent 
set point is imperative, along with mechanisms 
to mitigate artifacts12. Absent these prerequisites, 
the patient could remain excessively alert, as the 
controller strives toward an irrelevant target, or 
external interferences could disrupt medication 
administration, potentially precipitating hazardous 
situations.

Ideally, input should involve a drug characterized 
by rapid response and short half-life, as this 
minimizes delays and enhances safety12,13. A 
highly precise mathematical model is requisite 
for a controller to be clinically effective, thereby 
bolstering robustness, mitigating uncertainty, and 
reducing variability, which collectively contribute 
to safer control across diverse scenarios16,17. In the 
context of this study, an effective pharmacokinetic-
pharmacodynamic (PK-PD) model tailored to 
individual patients, accommodating uncertainty, is 
pivotal16,17. The establishment of rigorous boundaries 
is paramount to curb critical overdosing and 
underdosing16.

1.3. Types of controllers

Proportional Integral Derivative Control (PID)

PID controllers, renowned for their simplicity 
and frequent application (e.g., cruise control in 
automobiles), calculate output based on present 
errors (proportional), past errors (integral), and 
predictions of future errors (derivative)13.

ASA classification), anesthesia characteristics (e.g., 
general anesthesia with or without locoregional 
techniques, drug selection, drug dosage with baseline 
administration), closed-loop characteristics (e.g., 
controller type, controlled variable, performance), 
and intervention characteristics (e.g., control group 
size, comparison, blinding).

Critical appraisal of the selected articles was not 
undertaken. To synthesize the results, we grouped 
papers by their primary application (e.g., hypnosis 
and sedation, hemodynamics, muscle relaxation). 
If necessary, we further subdivided these groups to 
maintain clarity and structure. The most significant 
findings were summarized in Tables (I, II, III and IV) 
and presented narratively. Following the completion 
of the full manuscript, we opted to post-process 
the text using ChatGPT to enhance its readability 
and language11. After using this tool, the authors 
reviewed and edited the content as needed and take 
full responsibility for the content of the publication.

Results

1. General principles
1.1. Definitions

A closed-loop system may be defined as a system 
in which a controller autonomously determines 
the new input based on the registered output12. In 
contrast, an open-loop system operates without the 
output influencing the input, necessitating manual 
adjustments12. Many anesthesiologists are already 
acquainted with Target Controlled Infusion (TCI) 
systems, which represent a prime example of open-
loop systems13.

On the 17th July 2022 the following databases were searched with the search terms just below 
in italic: 
 
PubMed - MEDLINE  
"Anesthesia, Closed-Circuit"[Mesh] OR (("closed circuit" [tiab] OR "closed loop"[tiab]) AND 
(“anesthesia*”[tiab] OR “anaesthesia*”[tiab] OR “anesthetic*”[tiab] OR “anaesthetic*”[tiab] OR 
“hypnotic*”[tiab])) 
 
Embase  
’closed loop system’/exp OR ’closed loop control’/exp OR ’closed loop control system’/exp OR 
((‘closed circuit’:ti,ab,kw OR ‘closed loop’:ti,ab,kw) AND (‘anesthesia*’:ti,ab,kw OR ‘anaesthe-
sia*’:ti,ab,kw OR ‘anesthetic*’:ti,ab,kw OR ‘anaesthetic*’:ti,ab,kw OR ‘hypnotic*’:ti,ab,kw)) 
 
Cochrane  
("closed loop control systems" OR "closed loop control system" OR "closed loop control" OR 
"closed loop" OR "closed-loop control systems" OR "closed-loop control system" OR "closed-loop 
control" OR "closed-loop") AND (Anesthesia OR Anaesthesia OR Anesthetic OR Hypnotic) 
 
Clinicaltrials.gov  
("closed loop control systems" OR "closed loop control system" OR "closed loop control" OR 
"closed loop") AND (Anesthesia OR Anaesthesia OR Anesthetic OR Hypnotic) 
 
ICTRP  
("closed loop control systems" OR "closed loop control system" OR "closed loop control" OR 
"closed loop" OR "closed-loop control systems" OR "closed-loop control system" OR "closed-loop 
control" OR "closed-loop") AND (Anesthesia OR Anaesthesia OR Anesthetic OR Hypnotic) 
 
Since we only decided to exclude articles written before the year 2000 after the final search, 
no filter had been applied yet. 
 
 

Appendix III: Search strategy.
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Model Predictive control (MPC)

MPC necessitates the provisioning of a system 
model, which is subsequently employed to predict 
its future trajectory based on preceding inputs and 
outputs16.

Adaptive control

Adaptive control is indispensable in systems 
characterized by significant time-varying behavior, 
such as substantial blood loss, which can alter 
the effects of drug16. This approach mandates 
the formulation of a robust system model and is 
inherently more complex16.

2. Clinical applications

The findings have been organized in accordance 
with their application domains (Hypnosis and 
sedation, Hemodynamics, Relaxation, Respiratory, 
and Others) and are presented in their respective 

tables. Certain studies are duplicated across multiple 
tables, owing to their examination of various topics. 
To maintain the tables’ clarity, solely significant 
results are recorded, while certain details are 
omitted. Comprehensive details can be found in a 
separate Results Excel file, available upon request.

2.1. Hypnosis

Our examination identified 66 articles elucidating 
closed-loop anesthesia or sedation. Of these, 3 
constitute meta-analyses, and 11 are randomized 
controlled trials (RCTs). The meta-analyses report 
superior performance, prolonged time on target, and 
diminished Propofol consumption18,19,20.
Among these articles, 5 employed inhalation 
anesthetics as hypnotic agents, while others utilized 
Propofol, often in conjunction with Remifentanil, 
in closed-loop systems (24) or incorporated 
locoregional techniques (6). The majority of articles 

Fig. 1 — PRISMA flow chart.
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Discussion

Summary of evidence

In this comprehensive scoping review, we 
endeavored to investigate the current utilization 
of closed-loop drug administration in anesthesia 
practice. We executed this endeavor by scrutinizing 
articles discussing the application of closed-
loop systems in human patients, with a deliberate 
exclusion of those unrelated to the perioperative 
setting. Given the extensive scope of closed-loop 
systems, encompassing diverse clinical applications 
such as hemodynamics and sedation, direct 
comparison of results proves challenging, with no 
definitive superiority established among techniques.

Hypnosis and sedation

Upon examination of hypnosis studies, a notable 
degree of heterogeneity becomes evident. Diverse 
articles incorporated locoregional techniques, 
Remifentanil as an adjuvant, and inhalation 
anesthetics as hypnotic agents, while others used 
Propofol. Variability extended to drug selection, 
study design, and the presence or absence of 
control groups.

The utilization of BIS as a common output 
measure, often with PID controllers or self-
developed systems, was consistent across 
studies. Surgical contexts ranged widely, from 
endoscopic procedures to laparoscopic and cardiac 
surgeries. The importance of hypnosis during a 
procedure diminishes when adequate analgesia 
can be provided, such as through locoregional 
techniques. When Remifentanil and Propofol are 
co-administered, their synergistic effects augment 
potency. In addition, not all studies used a control 
group and sometimes the control group was not 
allowed to use TCI.

In general, the closed-loop groups, seemed to 
outperform the manual groups in several fields, 
like time on target, overall performance and time 
to awakening. One reason to explain this would 
be the possibility of the controller to constantly 
evaluate its dose and its given, updating in real 
time, focusing on sole task. The anesthesiologist in 
contrast, has several other parameters to look after, 
sometimes even different operating theaters all 
together, in addition to having to do administrative 
work, and supervise the controller for malfunction. 
This limits the possible brain capacity that can be 
used to constantly monitor the depth of sedation. 
Induction time did not seem to fully favor one or 
either group. Maybe, because the differences in 
wake-up time were rather small. Several papers did 
note the need for manual intervention, however, 
highlighting the need for constant supervision 

relied on a PID controller, with BIS as the primary 
output (55), and the chief outcomes encompassed 
time on target, satisfactory anesthesia, and 
controller performance. Notably, many of the 
earlier studies did not incorporate a control group 
(18) and frequently featured smaller sample sizes 
(1-34 patients).

2.2. Hemodynamics

Among the 19 articles scrutinizing hemodynamic 
management, 1 had already been addressed in the 
aforementioned meta-analysis, 7 pertained to fluid 
administration, and 11 focused on vasopressor 
administration. The meta-analysis exclusively 
evaluated anesthetic administration, revealing an 
extended period of heart rate and blood pressure 
maintenance on target18.

The studies giving fluids most often gave boluses 
of 100ml, monitoring the difference it generated in 
SVV (Stroke Volume Variation) and MAP (Mean 
Arterial Pressure), which resulted in a lower net 
fluid balance. When administering vasopressors, 
the drugs most often used were Noradrenaline and 
Phenylephrine, which resulted in less hypotension, 
also lasting shorter. Similar to the hypnosis studies, 
the older studies were often without control group 
(5) and with smaller sample sizes (1-55).

2.3. Relaxation

Ten articles were identified pertaining to relaxation 
monitoring, with five of these also featuring in other 
sections. All but one study employed the Train of 
Four (TOF) monitoring technique, administering 
a variety of muscle relaxants, with Rocuronium 
being the most prevalent. Most studies reported 
comparable results regarding consumption and 
relaxation levels.

2.4. Other

This category incorporated two studies addressing 
respiratory interventions, two focused on glucose 
management, and one broad meta-analysis 
encompassing multiple applications, some of 
which were also addressed elsewhere. These 
studies reported favorable outcomes, with closed-
loop techniques effectively managing ventilation, 
adapting to perioperative changes, and maintaining 
end-tidal CO2 within target ranges. Studies 
examining glucose management documented 
increased insulin administration accompanied by 
improved overall performance. The overarching 
meta-analysis reported extended periods on target, 
along with reduced instances of undershooting and 
overshooting, for the closed-loop groups21.
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of the closed-loop device. This in part because 
the controller cannot predict certain changes in 
surgery, like for example increased stimulus, blood 
loss or clamping of arteries, forcing it to take a 
reflexive approach.

Hemodynamics

We could identify 2 big groups in the hemodynamic 
management: the administration of fluids and the 
administration of vasopressors, with some studies 
using both. The studies tested a variety of surgical 
settings, of which abdominal surgery was the most 
frequent for the fluid administration, and elective 
cesareans being the most popular for vasopressor 
administration.

The studies looking at fluid administration 
almost exclusively used a self-developed controller, 
using several cardiovascular parameters like 
heart rate, (non-)invasive blood pressure, stroke 
volume variation and Clearsight to guide the fluid 
administration. They mainly reported the time of 
fluid dependency and total fluid balance, favoring 
the closed-loop group which had shorter times of 
fluid dependency and lower total fluid balances. It 
should be noted that these seemingly conflicting 
results originate from different studies, making 
some studies report lower fluid balances, and 
others less time of fluid dependency. This could 
possibly be explained by the subjective nature 
of fluid administration, resulting in more liberal 
approaches in certain studies and more restrictive 
approaches in others.

When investigating the studies balancing 
vasopressors, we again note that self-developed 
controllers are the most frequent, followed by PID 
controllers. Similarly, to the fluid studies, outputs 
measured consisted of (non-)invasive blood 
pressure, heart rate, stroke volume variation and 
cardiac index. The 3 RCT’s noted an improved 
controller performance with less hypotension and 
more time on target. The manual control groups, 
however, did not always administer medication in 
exactly the same way, possibly accounting for this 
difference.

The other studies included a variety of situations, 
of which elective cesareans were by far the most 
frequent. They reported similar results, with 
better times on target and less hypotension when 
compared to manual administration. Here too, 
we note that sometimes these manual groups had 
protocols which forced other doses. Additionally, 
manual overrides were sometimes reported.

Relaxation

The PID and self-developed controller were the 
most popular and all but one study had the TOF as 

output. The 2 RCT’s both administered Rocuronium, 
comparing it to manual administration, reporting 
similar results.

In the other studies Rocuronium was the most 
frequent, but also Mivacurium, Cisatracurium 
and Atracurium were investigated. The target 
varied between 2 out of 4 responses and 10%. The 
studies without control group reported satisfactory 
conditions and only needing intervention in one 
study for 4 patients.

When compared to manual administration most 
results were similar, one study reported faster 
return to baseline with lower variability.

Other

The 2 studies controlling the ventilation of patients 
used a PID controller, measuring the EtCO2 and 
other respiratory parameters. They were able 
to attain satisfactory clinical results, needing 
intervention in 1 patient. When compared to 
manual administration, they found better results 
with longer time on target and less overshoot. 
Possibly, this difference can be explained by the 
protocol to which the manual administration had to 
adhere; they had less flexibility in their treatment 
using a fixed tidal volume and PEEP, where the 
closed-loop protocol had more freedom.

When comparing the glucose management and 
Insulin administration, the blood glucose levels 
were used as output. This resulted in higher Insulin 
administered with lower standard deviation and 
lower creatinine levels.

The one META analysis investigating a variety 
of clinical applications of closed-loop in anesthesia 
reported a better performance of the closed-
loop groups in sedation, Insulin administration, 
ventilation and administration of vasopressors, in 
time on target, undershooting and overshooting.

Cost-effectiveness

While direct investigations into cost-effectiveness 
were not found, a plausible deduction suggests 
that a reduction in the total amount of drugs 
administered could lead to cost savings. However, 
this hinges on whether the potential drug savings 
outweigh the costs associated with the acquisition 
and maintenance of the closed-loop device 
and controller, most of which are not currently 
commercially available yet. Moreover, if favorable 
clinical outcomes contribute to reducing patient 
morbidity, total hospital stay, and complication 
rates, the overall cost may decrease. Unfortunately, 
few studies reported on the length of stay, both 
in the recovery room and the hospital, and the 
available data yielded nonsignificant results. 
Additionally, longer-term follow-up assessments 
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