Remifentanil PCIA for labor analgesia: Does it work? Is it safe?

VANDENBROUCKE M.¹

¹Department of Anesthesiology and Resuscitation, KU Leuven, University Hospitals Leuven, Gasthuisberg Campus, Leuven, Belgium.

Corresponding author: Matthijs Vandenbroucke, MD, Department of Anesthesiology and Resuscitation, University Hospitals Leuven, Herestraat 49, 3000 Leuven, Belgium. Email: matthijs.vandenbroucke@uzleuven.be

Abstract

Background: Patient-controlled intravenous analgesia with remifentanil (RPCA) is increasingly considered as an alternative to epidural analgesia during labor. Its pharmacological profile—ultrashort half-life, rapid metabolism, and ease of titration—offers theoretical advantages in terms of speed, autonomy, and clearance. Nevertheless, questions remain regarding its pharmacodynamic profiles, especially related to its analgesic potential and safety.

Objective: To evaluate whether RPCA is an effective and safe method for intrapartum analgesia.

Methods: A structured PubMed search (2000–2025) yielded 130 articles. After applying predefined selection criteria, 74 studies were included. These comprised randomized controlled trials, systematic reviews, guidelines, and both prospective and retrospective observational studies. Due to heterogeneity in protocols and outcomes, no meta-analysis was performed.

Results: RPCA was more effective than systemic opioids like pethidine in terms of pain relief and maternal satisfaction. Compared to epidural analgesia, RPCA provided less potent pain relief but similar satisfaction in selected patients. Conversion rates to neuraxial techniques ranged from 19% to 41%. Respiratory depression—mostly mild desaturation—was common. Severe maternal complications have been reported, particularly in association with inadequate monitoring or concurrent sedatives. Neonatal outcomes, including Apgar scores and umbilical cord pH, were generally comparable to other analgesic methods.

Conclusion: RPCA provides superior pain relief to systemic opioids and may offer a valuable alternative when neuraxial techniques are not feasible. While less effective than epidural analgesia, it can yield high maternal satisfaction. Respiratory events are common and sometimes severe, requiring strict safety measures including uninterrupted midwifery care, continuous saturation and respiratory monitoring, written protocols, a dedicated IV line, and staff trained in cardiorespiratory resuscitation.

Key words: Remifentanil, Analgesia, Patient-Controlled, Pain, Obstetric, Labor, Obstetric, Anesthesia, Epidural.

Introduction

Labor pain ranks among the most severe pain experiences in clinical practice. Effective pain relief is therefore essential in perinatal care. Epidural analgesia is generally considered the gold standard for intrapartum pain relief due to its consistent and profound analgesic effect. However, neuraxial techniques such as epidural analgesia are

not suitable or feasible for all women¹. Medical contraindications—such as coagulopathies, spinal abnormalities, or localized infections—may prevent their use. Additionally, rapid labor progression or temporary unavailability of anesthesia staff can interfere with timely administration. Some women also decline neuraxial analgesia for personal reasons.

In such cases, systemic analgesic alternatives are often used, including intramuscular opioids such

Previous presentation: This work has not been published or presented previously.

Ethics statement: This narrative review did not involve human or animal subjects and therefore did not require ethics committee approval or informed consent, in accordance with the Declaration of Helsinki.

Trial registration: Not applicable. This is a narrative review and does not report data from a prospective clinical trial.

as pethidine or the use of nitrous oxide. However, these approaches offer only limited pain relief and are frequently associated with maternal and neonatal side effects². Within this context, patient-controlled intravenous analgesia with remifentanil (RPCA) has gained attention as a potential alternative3,4. Remifentanil is a potent, ultrashort-acting μ-opioid receptor agonist with rapid clearance and favorable pharmacokinetics for use during labor. Administered via a patient-controlled analgesia pump, it enables the laboring woman to self-administer small boluses in response to contractions, potentially increasing her sense of control with pain management⁵.

Despite growing interest, RPCA is not widely adopted as a standard option. Its analgesic efficacy remains under discussion—particularly in comparison with epidural analgesia—and concerns about maternal safety, especially regarding respiratory depression, persist.

This review addresses two key questions: (1) How effective is remifentanil-PCA in terms of pain reduction, maternal satisfaction, and the need for conversion to epidural analgesia? and (2) How safe is the technique, considering both maternal adverse events (e.g., sedation, hypoxemia, respiratory depression) and neonatal outcomes (e.g., Apgar scores, umbilical cord pH, NICU admission)?

Background

Labor Pain Mechanisms

Labor pain results from a combination of physiological and psychological factors. In the first stage, pain is mainly visceral, caused by uterine contractions and cervical dilation. In the second stage, somatic pain becomes dominant due to distension of the pelvic floor, vagina, and perineum. Pain intensity increases with stronger contractions, fetal descent, and maternal fatigue. Anxiety, parity, and previous childbirth experiences further influence pain perception.

Analgesic Options and Limitations

Pain relief during labor is essential. Current strategies include both pharmacological and non-pharmacological methods. Among pharmacological options, neuraxial techniques—particularly epidural analgesia—are widely accepted as the most effective method of analgesia^{6,7}. Epidural analgesia involves the administration of local anesthetics, often in combination with opioids, into the epidural space. This approach provides profound and segmental analgesia, but may be associated with motor blockade, hypotension, urinary retention, and prolonged second-stage labor. It is not

always feasible due to contraindications such as coagulopathy or spinal abnormalities, or because of limited anesthesia availability or rapid labor.

When neuraxial techniques are not available or declined, systemic analgesia is often used. Intramuscular opioids like pethidine (meperidine) have historically been the mainstay. These agents offer modest pain relief but are often associated with side effects such as maternal sedation, nausea, and vomiting. Furthermore, pethidine crosses the placenta and may lead to neonatal respiratory depression or reduced alertness postpartum. Inhaled nitrous oxide is another option used in some countries. It is easy to administer and has a fast onset, but its analgesic effect is modest, and side effects like dizziness and nausea are common^{8,9}.

Pharmacology of Remifentanil

Within this therapeutic landscape, patientcontrolled intravenous analgesia with remifentanil (RPCA) has emerged as a potential alternative¹⁰. It has rapid onset and offset due to metabolism by non-specific plasma and tissue esterases. Its pharmacokinetics allow for fast titration and minimal accumulation. Early pharmacological studies, such as Evron et al. (2005), identified remifentanil as a promising agent due to its rapid onset and short duration11. Studies show that remifentanil crosses the placenta but is quickly metabolized in the fetus, with umbilical artery levels often undetectable. Volikas et al. (2005) reported cord blood levels of 2-7 ng/ml in the umbilical vein but often undetectable levels in the umbilical artery¹². A Swedish cohort study suggested that RPCA may shorten labor and increase spontaneous delivery rates compared to epidural analgesia, supporting its use in selected populations¹³.

Rationale for RPCA

RPCA enables the laboring woman to self-administer timed remifentanil boluses, typically before a contraction. This modality offers an individualized approach to analgesia and may enhance the mother's sense of control¹⁴.

Despite its potential, RPCA is not widely implemented. Concerns remain about efficacy, safety, and the need for continuous monitoring. Early interest was fueled by its pharmacokinetic profile and patient control. Yet as Van de Velde (2008) noted, most early trials were small and inconsistent, with moderate analgesia at best. Visual analog scale (VAS) scores typically ranged from 30–60 mm, and many women needed epidural conversion. These concerns emphasized the need

for more rigorous evidence before RPCA could be broadly recommended¹⁵. The current review therefore aims to critically examine the available literature on RPCA's effectiveness and safety during labor.

Methodology

This review was conducted as a narrative synthesis of the available literature on patient-controlled intravenous remifentanil analgesia (RPCA) during labor. A systematic search was performed in PubMed to identify studies published between January 1, 2000, and March 1, 2025. The goal was to retrieve publications evaluating either the effectiveness or safety of RPCA in obstetric settings.

The search strategy combined the following terms: ("remifentanil" [MeSH] OR remifentanil [Title/Abstract]) AND ("Patient-Controlled" [Title/Abstract] AND analgesia [Title/Abstract]) AND ("Labor, Obstetric" [MeSH] OR labor OR childbirth [Title/Abstract]) AND (analgesia [MeSH] OR analgesia [Title/Abstract]). The search was executed on April 9, 2025.

In total, 130 records were identified. After title and abstract screening, full texts were reviewed for relevance. Seventy-four studies met the predefined inclusion and exclusion criteria and were retained for qualitative analysis. Data were extracted manually and organized thematically according to study design, focus, and outcome type.

Studies were included if they met the following criteria:

- Focused specifically on RPCA as a method for labor pain relief.
- Reported outcomes on analgesic efficacy (e.g., pain scores, maternal satisfaction, epidural conversion) or safety (e.g., respiratory events, sedation, Apgar scores, cord pH, NICU admission).
- Included a comparator group (e.g., epidural, systemic opioids) or provided meaningful clinical context (e.g., implementation protocols, safety guidelines).
- Included guidelines or expert commentaries that informed clinical use or described rare but serious complications (e.g., maternal respiratory depression or cardiac arrest).

Most selected studies consisted of randomized controlled trials, cohort studies, systematic reviews, or clinical guidelines. A small number of case reports and expert editorials were also included when they contributed unique insights or highlighted safety concerns.

Due to considerable heterogeneity in study design, dosing protocols, monitoring standards, and outcome definitions, no meta-analysis was performed. Formal risk-of-bias tools (e.g., Cochrane RoB, GRADE) were not applied. However, limitations noted by the original authors were considered during interpretation.

To provide a clear overview of the nature of the included evidence, the 74 retained studies were further categorized by study type: 27 were randomized controlled trials (RCTs), 10 were systematic reviews or meta-analyses, 14 were prospective observational studies, 9 were retrospective observational studies, 11 were case reports or expert opinion articles, and 3 were audits or registry-based analyses.

Efficacy of patient-controlled intravenous remifentanil analgesia (RPCA)

Rationale for the use of RPCA

In clinical practice, neuraxial analgesia—particularly epidural techniques—may not always be feasible due to medical contraindications, rapid labor progression, institutional constraints, or maternal preference^{8,9}. Therefore, alternative systemically administered analgesic methods have gained increasing attention.

Remifentanil is a potent, ultra-short-acting μ -opioid receptor agonist that undergoes rapid metabolism by non-specific plasma and tissue esterases, resulting in a context-independent half-life of approximately 3–5 minutes¹⁶. Its pharmacokinetic profile allows for rapid onset and offset, enabling flexible titration during labor. These characteristics make remifentanil well suited for use in a patient-controlled intravenous analgesia system, specifically referred to as remifentanil-PCIA (RPCA).

RPCA enables the laboring woman to self-administer bolus doses in anticipation of uterine contractions. This approach offers both pharmacological and psychological advantages.

Early clinical studies and audits reported growing interest in RPCA as a viable alternative for women who cannot or do not wish to receive neuraxial analgesia. Hill (2008) and Cai et al. (2023) observed that RPCA can offer effective analgesia while maintaining maternal alertness and respiratory drive, provided it is administered with appropriate dosing protocols and continuous monitoring^{17,18}.

The NICE guideline (2023) supports RPCA as a clinically acceptable second-line option in well-equipped centers. In contrast, Van de Velde & Carvalho (2016) urge caution, citing frequent

maternal respiratory events and the necessity for continuous one-to-one monitoring^{8,9}.

Mechanism of action and administration

Remifentanil is a μ-opioid receptor agonist with ultra-short duration of action due to rapid metabolism by non-specific plasma and tissue esterases¹⁶. This pharmacokinetic profile allows for rapid onset and offset of effect, enabling titrated bolus administration in response to uterine contractions. Li et al. (2023) reported significantly faster analgesic onset with RPCA (0.97 minutes) compared to epidural analgesia (15.7 minutes), which may be advantageous during rapid labor¹⁹.

In labor settings, RPCA allows the woman to activate pre-programmed boluses at the onset of contractions. Peak analgesic effect typically occurs 60–90 seconds after administration^{20,21}. Accurate timing is essential, requiring anticipatory use and coaching to synchronize dosing with contractions.

Effective use of RPCA depends on individualized titration and protocol adherence²². Common regimens include 20–40 μg boluses with 2–3 minute lockout intervals, without background infusion. Higher doses may improve analgesia but increase the risk of desaturation^{8,18,23}. Background infusions are generally avoided due to cumulative opioid exposure and the risk of respiratory depression.

Jost et al. (2013) found slightly lower pain scores using a dynamic bolus-infusion regimen versus a fixed-bolus approach. The modified protocol required fewer additional requests and no dose adjustments²⁴. In a randomized trial, Balcioglu et al. (2008) compared two regimens differing in background infusion rate. The 0.15 µg/kg/min group reported lower pain scores than the 0.1 µg/kg/min group, despite identical bolus dosing, suggesting that modest background infusion may enhance efficacy²⁵.

Pain reduction

RPCA versus systemic opioids

Several studies have compared the analgesic effectiveness of RPCA with systemic opioids, mainly intramuscular pethidine and intravenous fentanyl.

Blair et al. (2005) reported significantly lower VAS pain scores and higher maternal satisfaction with RPCA compared to pethidine, particularly during the first stage of labor². RPCA also showed faster onset of action and less neonatal sedation. Ng et al. (2011) confirmed these findings, reporting lower pain scores and a higher percentage of successful PCA demands with RPCA⁴.

In the multicenter RESPITE trial, Wilson et al. (2018) similarly found that RPCA led to lower pain

scores, fewer conversions to neuraxial analgesia, and higher maternal satisfaction compared to pethidine²⁶.

Comparisons between RPCA and fentanyl PCIA have yielded more variable results. Marwah et al. (2012) found no significant difference in pain scores, but RPCA had a higher percentage of successful demands, suggesting improved titration²⁷. Douma et al. (2010) observed better early pain relief with RPCA during the first hour, though this benefit was not sustained over time²⁰.

In summary, RPCA provides superior analgesia compared to pethidine and appears at least as effective—if not more efficient—than fentanyl PCIA in early labor.

RPCA versus epidural analgesia

Several studies have compared RPCA to epidural analgesia for labor pain relief. Across trials, RPCA consistently resulted in higher pain scores, though maternal satisfaction often remained acceptable. In a randomized trial, Douma et al. (2011) reported significantly higher pain scores with RPCA, especially during the second stage of labor, despite relatively high satisfaction²⁰.

Logtenberg et al. (2017) confirmed this pattern: RPCA produced more pain but was still considered acceptable by many women²¹.

Stocki et al. (2014) also observed higher VAS scores in the RPCA group during active labor, while satisfaction levels were comparable²⁸. In a prospective study, Süğür et al. (2020) found that from the second hour onward, VAS scores peaked at 4 with RPCA versus 1 with epidural, indicating inferior analgesia despite general adequacy²⁹.

Observational reports by Hill (2008) and Frauenfelder et al. (2015) supported these findings, concluding that while RPCA offers weaker pain control, it may still provide a positive birth experience in selected patients^{18,30}.

Overall, epidural analgesia remains superior to RPCA in analgesic efficacy, particularly in advanced labor. However, RPCA can offer satisfactory pain relief when carefully administered and supported.

Maternal satisfaction

Maternal satisfaction with RPCA varies depending on the comparator and clinical context.

Compared to intramuscular pethidine, RPCA consistently results in higher satisfaction scores. Blair et al. (2005) and Ng et al. (2011) attributed this to faster onset, improved autonomy, and reduced neonatal sedation^{2,4}. The ability to self-administer analgesia contributed strongly to women's sense of control.

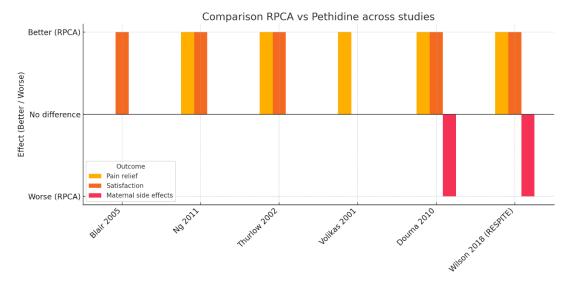


Fig. 1 — Comparative effectiveness of remifentanil PCA versus pethidine across key outcomes. Remifentanil PCA provided significantly better pain relief and higher maternal satisfaction compared to pethidine in most studies. Maternal desaturation was more frequent with remifentanil PCA in some studies. "No difference" indicates no statistically significant difference between groups.

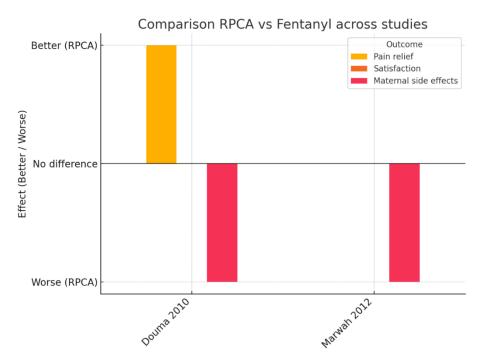


Fig. 2 — Comparative effectiveness of remifentanil PCA versus fentanyl across key outcomes. Remifentanil PCA resulted in better early pain relief in one study, but maternal side effects, particularly desaturation episodes, were more common compared to fentanyl. "No difference" indicates no statistically significant difference between groups.

When compared to epidural analgesia, findings are less uniform. Logtenberg et al. (2017) and Stocki et al. (2014) reported comparable satisfaction despite higher pain scores in the RPCA group^{21,28}. This suggests that satisfaction is not solely dependent on pain intensity but may also reflect factors such as autonomy and mobility preservation.

However, other studies observed significantly lower satisfaction with RPCA. Douma et al. (2011) and Frauenfelder et al. (2015) linked this to suboptimal pain control and unmet

expectations^{6,30}. In a large multicenter trial, Freeman et al. (2015) confirmed this trend: RPCA scored significantly lower than epidural analgesia across both hourly and global satisfaction ratings³¹. In summary, although RPCA can yield acceptable satisfaction—especially in motivated or well-supported patients—epidural analgesia more reliably achieves high satisfaction levels.

Conversion to neuraxial analgesia

Initial feasibility studies, such as that by Blair et al. (2001), demonstrated that RPCA could provide

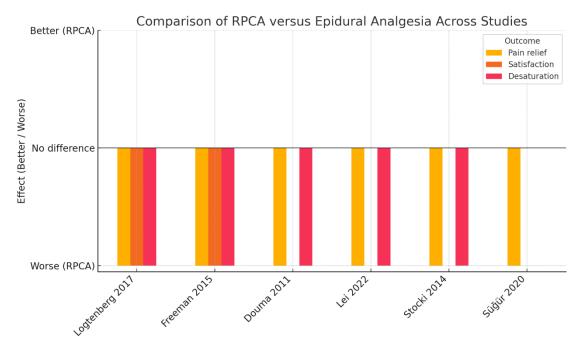


Fig. 3 — Comparative effectiveness of remifentanil PCA versus epidural analgesia across included studies. Pain relief was consistently worse with remifentanil PCA compared to epidural analgesia, while maternal oxygen desaturation was more frequent with remifentanil PCA.

No significant difference in maternal satisfaction was observed in several studies. "No difference" indicates no statistically significant difference between groups.

adequate labor analgesia, although conversion rates were not yet clearly established³².

Since then, multiple studies have reported conversion rates from RPCA to neuraxial analgesia. In the RESPITE trial, Wilson et al. (2018) observed a conversion rate of 19% 26. Blair et al. (2005) reported a similar incidence, while observational studies by Hill (2008) and Logtenberg et al. (2017) described higher rates ranging from 25% to over 40%^{2,18,21}.

Reasons for conversion are often multifactorial. Most commonly, women requested neuraxial techniques in the second stage of labor due to insufficient analgesia, maternal fatigue, or changing preferences³³.

Importantly, as Freeman et al. (2018) noted in the RAVEL trial, conversion to epidural does not equate to failure but reflects dynamic, patient-centered analgesia planning³⁴.

Some studies allowed adjunct use of nitrous oxide, although this was not part of the standardized RPCA protocol, further complicating interpretation of conversion data.

Comparison of study designs and limitations

The evidence base for RPCA during labor is marked by substantial heterogeneity in study design, dosing strategies, monitoring protocols, and outcome measures³⁵. This variability hinders comparability across studies and precludes high-quality meta-analyses.

Included studies range from randomized controlled trials (Wilson et al., 2018; Lei et al.,

2022; Ismail et al., 2012) to observational cohorts and single-center audits (Hill, 2008; Logtenberg et al., 2017; Cai et al., 2023)^{17,18,21,26,36,37}. While RCTs provide methodological robustness, their generalizability may be limited due to narrow eligibility criteria and tightly controlled conditions. Observational studies better reflect real-world practice but are more susceptible to confounding and bias.

Dosing protocols differ considerably. Some trials administered conservative boluses of 20–30 µg with 2–3 minute lockouts, while others allowed higher boluses up to 50–60 µg or used background infusions^{17,38}. Monitoring standards also vary: some studies required continuous supervision and pulse oximetry, whereas others offered minimal detail on safety procedures. As highlighted by Wydall et al. (2023), this inconsistency limits synthesis and emphasizes the need for transparent reporting standards³⁹.

Outcome definitions are equally inconsistent. Pain relief is measured using diverse VAS metrics—peak vs. mean scores, or stage-specific assessments. Respiratory events are variably defined, using different desaturation thresholds, sedation scores, or apnea reporting. Neonatal outcomes such as Apgar scores or cord pH are often incomplete or inconsistently reported⁴⁰.

These methodological discrepancies increase the risk of outcome reporting bias and impair meaningful interpretation. Systematic reviews, including those by Weibel et al. (2017) and the NICE Evidence Review (2023), have acknowledged these limitations and graded the certainty of RPCA-related evidence as low to very low across most outcomes^{9,41}.

In conclusion, although RPCA appears promising as a second-line analgesic technique, future studies must adopt consistent dosing schemes, unified outcome definitions, and clearly documented safety protocols. Improved methodological rigor is essential for valid comparisons and safe implementation.

Safety of patient-controlled intravenous remifentanil analgesia (RPCA)

Maternal safety

The main maternal adverse effects associated with remifentanil-PCIA (RPCA) are dose-dependent respiratory depression and sedation. Mild oxygen desaturation (SpO₂ < 94%) is common, particularly at higher bolus doses or in the absence of supplemental oxygen, with reported incidence ranging from 25% to over 50%^{20,42,43}. Sedation is also frequently observed, though typically mild and self-limiting.

A randomized trial comparing RPCA regimens found that escalating bolus doses increased sedation rates, despite similar analgesic outcomes⁴⁴. This highlights the importance of cautious dosing and continuous monitoring during administration.

Apneic episodes have been reported but are inconsistently defined across studies. Definitions range from the absence of respiratory effort for more than 10 seconds to various clinical or surrogate criteria^{28,45}. While most episodes resolve spontaneously, any occurrence of apnea during labor is clinically relevant. Therefore, one-to-one supervision and continuous respiratory monitoring are mandatory.

Compared to neuraxial techniques, RPCA is associated with a higher rate of maternal desaturation events⁴⁶. However, under strict monitoring protocols, most events remain manageable. Despite remifentanil's favorable pharmacokinetic profile, the risk of respiratory depression necessitates uninterrupted supervision8.

Other adverse effects such as nausea, vomiting, dizziness, and bradycardia have been reported, though less frequently and typically mild^{20,36,47}.

Severe maternal complications are rare but documented. Marr et al. (2013) reported a cardiorespiratory arrest related to RPCA without monitoring or oxygen supplementation48. A similar case was described by Bonner & McClymont (2012), again involving inadequate supervision⁴⁵. These cases underline the need for continuous bedside presence by trained personnel.

Recent data suggest that RPCA can be used in selected high-risk populations, such as patients with obesity or pre-existing respiratory vulnerability, provided that enhanced monitoring is ensured⁴⁹. However, this use remains off-label and should be limited to experienced centers with immediate access to resuscitation resources.

Neonatal outcomes

Apgar scores and respiratory adaptation

Most studies report no significant differences in Apgar scores between neonates exposed to remifentanil-PCIA (RPCA) and those whose mothers received neuraxial analgesia. Stocki et al. (2014) found no increased incidence of Apgar scores below 7 at five minutes in the RPCA group compared to the epidural group²⁸. These findings were supported by two systematic reviews (Weibel et al., 2017; Lei et al., 2022), which both concluded that RPCA was not associated with a higher risk of poor Apgar outcomes compared to other analgesic options^{36,41}.

RPCA may even offer advantages over traditional systemic opioids. Volikas et al. (2001) reported significantly higher Apgar scores and a reduced need for neonatal stimulation following RPCA compared to intramuscular pethidine⁵⁰. Similarly, Tveit et al. (2013) observed no deterioration in Apgar scores or umbilical cord pH after maternal use of RPCA, further supporting its safety in routine obstetric settings⁵¹.

Need for resuscitation or NICU admission

Available data on the need for neonatal resuscitation or admission to a neonatal intensive care unit (NICU) following maternal RPCA use are generally reassuring. In a cohort of over 1500 women, Hill (2008) reported an immediate intubation rate of 0.1%, which was comparable to that seen after epidural analgesia and intramuscular pethidine18. Murray et al. (2019) conducted a retrospective analysis and observed a lower NICU admission rate following RPCA (1.6%) compared to epidural analgesia (3.6%)⁵². However, this result should be interpreted cautiously. In that study, women receiving epidural analgesia more often had complicated labors or required operative delivery, which could confound neonatal outcomes. The observational design also precludes any firm conclusions regarding causality.

Umbilical cord pH and acid-base status

Umbilical cord pH is a key parameter for assessing neonatal metabolic status at birth. Across most studies, no significant differences have been reported in cord pH values between neonates exposed to RPCA and those exposed to alternative analgesic methods. Knapp et al. (2023) specifically examined a cohort of women with significant cardiac comorbidities and found normal umbilical cord blood gas values in all cases, without evidence of neonatal acidemia⁴⁹. These findings support the view that, under strict monitoring conditions, RPCA does not adversely impact neonatal acid-base balance.

Mild sedation and neonatal tone

Rare cases of mild neonatal sedation or hypotonia have been reported when RPCA was administered up to the time of delivery. These effects were transient, resolved spontaneously, and did not require active intervention. Jia et al. (2020) assessed neonatal adaptation after maternal RPCA and found no severe adverse outcomes. Subtle, short-lived reductions in neonatal tone or responsiveness were occasionally observed⁵³. The rapid metabolism of remifentanil by both placenta and fetus is believed to explain the brief neonatal exposure.

Monitoring of neonatal vital parameters

Available studies have not identified concerning trends in neonatal cardiovascular or respiratory parameters following maternal RPCA. In a prospective observational study, Konefał et al. (2013) found that neonatal heart rate, blood pressure, and oxygen saturation during the first 24 hours postpartum were comparable between RPCA and epidural groups⁵⁴. These data support the physiological stability of neonates when RPCA is used with appropriate monitoring and timing.

Neurological assessment

Neonatal neurobehavioral outcomes following maternal use of RPCA appear to be reassuring. In a prospective trial, Douma et al. (2010) evaluated early neurological adaptation using the Neonatal Adaptive Capacity Score (NACS), and found no significant differences between neonates exposed to RPCA, fentanyl-PCIA, or intramuscular meperidine²⁰. More recent observational data by Lucovnik et al. (2023) supported these findings, reporting no adverse neurodevelopmental effects even in high-risk deliveries such as breech or twin gestations⁵⁵. These results suggest that RPCA does not negatively impact early neonatal neurological function, although longer-term neurodevelopmental follow-up data remain limited.

Summary

When administered with adequate monitoring and supervision, RPCA does not adversely affect key neonatal outcomes. Studies consistently report comparable Apgar scores, umbilical cord pH, and need for resuscitation or NICU admission relative to neuraxial or systemic opioid analgesia. The rapid metabolism and limited placental transfer of remifentanil likely underpin this favorable neonatal safety profile. Although rare cases of mild sedation or transient hypotonia have been observed when RPCA continued until delivery, these events were self-limiting and did not require intervention. Overall, current evidence suggests that RPCA, when used under strict safety protocols, is comparable to other analgesic techniques in terms of neonatal well-being.

Monitoring and safety protocols

Clinical monitoring requirements

The safe administration of RPCA during labor requires continuous monitoring and the presence of trained staff. Maternal respiratory depression is the primary risk, and use without direct observation is not aligned with best clinical practice⁵⁶.

Pulse oximetry must be used in all patients receiving RPCA⁵⁷. However, its limitations are well established: apneic episodes and hypoventilation may occur without immediate oxygen desaturation, potentially delaying detection^{28,58}.

Therefore, exclusive reliance on pulse oximetry is inadequate. Real-time assessment of respiratory rate, level of consciousness, and sedation must be included in the monitoring protocol. Capnography enables earlier detection of respiratory compromise and is particularly recommended when background infusions are used, although availability varies between centers⁵⁸.

Neonatal preparedness

Due to the rapid placental transfer of remifentanil, neonatal exposure may lead to transient respiratory depression, especially if RPCA is continued until delivery. If RPCA remains active near the time of birth, a pediatrician or neonatologist must be readily available, and naloxone should be prepared in advance.

Dosing strategies and respiratory risk management

A conservative starting dose of 20–30 µg with a minimum lockout interval of two minutes is commonly recommended to minimize respiratory adverse events without sacrificing analgesic efficacy^{9,59}. Bolus doses exceeding 40 µg have been linked to higher rates of desaturation and sedation^{28,60,61}.

Several trials suggest that adding a background infusion to bolus administration may enhance analgesic consistency without substantially increasing total remifentanil use or desaturation risk^{62,63}. However, no prospective trials have validated low-dose regimens in labor, and dosing strategies remain a subject of debate.

Institutional standards and team readiness

RPCA must be restricted to settings with continuous bedside monitoring and immediate access to advanced airway support. NICE (2023) guidelines require the presence of an onsite anesthetist during RPCA administration.

Evidence from Tveit et al. (2012) indicates that in the absence of proper monitoring and dosing, RPCA carries a higher risk of maternal desaturation than epidural analgesia⁶⁴.

Furthermore, Kranke et al. (2013) warned against considering RPCA a "poor man's epidural," highlighting that its apparent simplicity belies serious risks if implemented without the same institutional vigilance, staff expertise, and emergency readiness required for neuraxial analgesia⁶⁵. Clinical use of RPCA demands the same infrastructural safeguards as epidural techniques.

Labor ward staff must be trained to promptly identify and manage opioid-induced respiratory depression. This includes sedation scoring, oxygen administration, airway maneuvers, and troubleshooting of PCA devices⁶⁶.

Technology-assisted administration and its limitations

Technological innovations, such as variable positive infusion analgesia (VPIA) systems, aim to automate remifentanil delivery and reduce bolus errors⁴². However, while promising, such technologies cannot replace vigilant clinical supervision.

Rehberg et al. (2015) demonstrated that anticipatory bolus algorithms alone are insufficient: human presence remains the critical safety factor¹⁶.

Practical examples of structured implementation

- A dedicated intravenous line for remifentanil,
- Continuous bedside monitoring,
- Documentation of vital signs every 30 minutes,
- Immediate availability of resuscitation equipment.

Similarly, the RemiPCA SAFE Network emphasized standardized safety protocols and emphasized conservative dosing as the cornerstone of safe RPCA practice⁵⁹.

Summary

The use of RPCA in labor requires strict adherence to safety protocols, including continuous

respiratory monitoring, bedside presence of trained staff, and immediate access to emergency support. Conservative dosing and careful patient selection further reduce risk. While technological systems may help standardize drug delivery, they cannot replace active human supervision.

However, consistently applying these measures in clinical practice presents logistical challenges. The level of monitoring required goes beyond standard one-to-one midwifery care and may be difficult to achieve in all settings. This discrepancy between theoretical standards and real-world feasibility must be acknowledged: ethical justification for RPCA depends on actual, not assumed, compliance with safety requirements.

Without adequate infrastructure and continuous clinical oversight, the use of RPCA during labor cannot be considered safe or appropriate.

Discussion

Interpretation of effectiveness

Remifentanil patient-controlled intravenous analgesia (RPCA) has garnered increased attention in recent years as a second-line analgesic option during labor, particularly in scenarios where neuraxial analgesia is contraindicated or unavailable. This section synthesizes findings on RPCA's effectiveness regarding pain reduction, maternal satisfaction, and conversion to neuraxial analgesia.

Available evidence consistently demonstrates that RPCA provides superior analgesia compared to conventional systemic opioids. A randomized study by Douma et al. (2010) showed significantly lower pain scores and higher maternal satisfaction with RPCA than with intravenous fentanyl PCIA or intramuscular pethidine²⁰. Similarly, the multicenter RESPITE trial reported that RPCA resulted in less pain and reduced need for epidural rescue analgesia compared to pethidine, although epidural analgesia remained absolutely superior²⁶. A Cochrane review by Weibel et al. (2017) confirmed that RPCA offers better pain relief than conventional opioids, although the certainty of evidence was rated low 41. These findings align with expert classifications, such as that by Van de Velde & Carvalho (2016), who awarded RPCA a higher evidence grade than pethidine (Class I-A)⁸.

However, RPCA consistently provides less potent analgesia compared to epidural techniques. Several RCTs (e.g., Lei et al., 2022; Logtenberg et al., 2017) and meta-analyses (e.g., Liu et al., 2014) reported significantly higher VAS pain scores with RPCA, particularly during the second stage of labor^{21,36,67}. This limitation in analgesic

depth remains a key reason why guidelines do not recommend RPCA as a first-line technique^{8,67}.

Despite inferior analgesia compared to epidural techniques, maternal satisfaction with RPCA remains notably high. In the study by Douma et al. (2010), women reported greater satisfaction with RPCA compared to fentanyl PCIA or pethidine, even when pain scores were moderate 20. Similarly, a retrospective study by Cai et al. (2023) found that higher remifentanil bolus doses (50 µg) improved both pain scores and satisfaction without increasing side effects¹⁷. The ability to self-administer analgesia likely enhances the sense of autonomy and control, which positively impacts maternal satisfaction even when pain relief is incomplete^{20,68}. Qualitative findings support this: a sub-analysis of the RESPITE trial found that most women appreciated the autonomy RPCA provided and would opt for RPCA again in future labor, despite acknowledging incomplete analgesia (Moran et al., 2019)68. Logtenberg et al. (2017) also reported that multiparous women were as satisfied or even more satisfied with RPCA than with epidural analgesia, whereas primiparous women were more likely to prefer epidurals²¹. These observations highlight that maternal satisfaction is multidimensional and influenced by autonomy, expectations, and support—not merely pain intensity.

The rate of conversion from RPCA to neuraxial analgesia (usually epidural) is often used as an indicator of RPCA's limitations. In the RESPITE trial, 19% of women initially assigned to RPCA ultimately requested an epidural 26. In observational cohort studies, conversion rates are higher; Logtenberg et al. (2017) and Hill (2008) reported conversion rates of approximately 25% and over 40%, respectively 18,21. This variability likely reflects differences in dosing protocols, patient populations, and institutional practices. Importantly, conversion should not be automatically viewed as RPCA failure. Freeman et al. (2018), analyzing RAVEL trial data, emphasized that switching to epidural analgesia often results from a complex interplay of patient preferences, clinical course, and institutional norms rather than from intrinsic inadequacy of RPCA. Conversely, the fact that approximately 60-80% of women do not require conversion demonstrates that RPCA can provide sufficient analgesia for the majority³⁴.

Although overall findings consistently show that RPCA reduces pain (especially compared to opioids) and results in high satisfaction, the quality of evidence remains limited by study heterogeneity. Both Liu et al. (2014) and the NICE Evidence Review (2023) rated the certainty of evidence as low to moderate due to variability in study

designs, populations, and outcome definitions^{9,67}. Nonetheless, the totality of available data supports that RPCA can offer clinically meaningful analgesia and high satisfaction for selected patients. When administered and monitored appropriately, RPCA constitutes a valid second-line analgesic strategy, particularly in cases where neuraxial techniques are not feasible.

Interpretation of safety

RPCA can be safely administered for both mother and neonate when delivered under highly controlled conditions with continuous monitoring. Without stringent safeguards, this technique carries meaningful clinical risks. Frequent but generally mild maternal respiratory effects are observed, and although rare, serious complications have been reported. Strict adherence to safety protocols is therefore essential.

Respiratory depression remains the most prominent risk for mothers receiving RPCA. Sedation and oxygen desaturation occur frequently—reported in approximately 25-50% of women—and are more pronounced with higher bolus doses or when supplemental oxygen is not provided^{20,43}. Messmer et al. (2016) observed transient SpO₂ drops below 90% in 70% of women (median minimum 87%), despite appropriate supervision⁴³. Similarly, Leong et al. (2021) reported desaturation events in all patients, with prolonged episodes (>60 seconds) occurring in 68%⁴². These hypoxemic episodes were generally brief and without lasting clinical consequences. Apneas have also been described, although their definitions vary among studies. Stocki et al. (2014) noted occasional brief respiratory pauses without clinical impact²⁸, while Thurlow (2002) demonstrated that respiratory depression can occur even at low remifentanil doses, suggesting individual susceptibility69.

Aside from respiratory effects, some evidence suggests that RPCA might induce less intrapartum fever than epidural analgesia, though findings remain inconclusive^{36,70}.

Serious maternal complications during RPCA are exceedingly rare but underscore the critical importance of monitoring. Marr et al. (2013) described a maternal cardiopulmonary arrest during labor induction with RPCA, in a setting without continuous monitoring or supplemental oxygen⁴⁸. Bonner & McClymont (2012) reported a similar respiratory arrest under conditions of inadequate supervision⁴⁵. Ohashi et al. (2016) described respiratory arrest when RPCA was combined with other opioids, highlighting risks of drug interactions⁷¹. All these cases involved deviations

from recommended protocols. Conversely, large registry data (e.g., the RemiPCA SAFE initiative with over 6000 cases) reported no maternal mortality or irreversible harm under strict protocol adherence⁵⁹. Most recorded complications occurred in centers with limited experience or inadequate staffing, emphasizing the necessity of expert supervision⁵⁹.

Neonatal outcomes after maternal RPCA use are generally reassuring. Key parameters such as Apgar scores and umbilical cord pH are comparable to those seen with conventional analgesia. Stocki et al. (2014) found no differences in the number of neonates with 5-minute Appar scores below 7 between RPCA and epidural groups²⁸. Similarly, Knapp et al. (2023) reported no cases of neonatal acidosis among high-risk pregnant women who received RPCA⁴⁹. Although mild neonatal sedation or hypotonia has occasionally been observed when remifentanil administration occurred close to delivery, these effects are transient and resolve spontaneously without intervention. Rapid placental and neonatal metabolism of remifentanil limits neonatal exposure duration and intensity.

There is a strong consensus that RPCA must be administered cautiously. Van de Velde & Carvalho⁸ recognized that RPCA offers superior pain relief and satisfaction compared to pethidine but emphasized its narrow safety margin and high incidence of maternal respiratory events. Accordingly, they advised against routine RPCA use unless one-on-one continuous monitoring and emergency protocols are guaranteed. This view is echoed by the latest NICE guideline (2023), which states that RPCA should only be offered where continuous specialist monitoring and immediate intervention capabilities are available9. Such recommendations highlight that RPCA, while valuable, must remain reserved for settings where strict safety standards can be assured.

Broader implications and future directions

The findings of this literature review suggest that RPCA can serve as a useful alternative for labor analgesia under appropriate conditions. Although RPCA cannot match epidural analgesia in terms of analgesic potency, it fills an important niche for women who cannot or do not wish to undergo neuraxial techniques.

Evidence shows that RPCA outperforms traditional systemic opioids while falling short of epidural analgesia. Multiple studies confirm that remifentanil PCIA achieves better pain relief and higher satisfaction than intramuscular pethidine^{20,26}. However, meta-analyses, such as Liu et al. (2014), conclude that RPCA cannot provide

analgesia equivalent to epidurals but offers an acceptable alternative when neuraxial analgesia is not feasible⁶⁷. Van de Velde & Carvalho (2016) similarly classified RPCA as superior to pethidine (evidence Class I-A) but inferior to epidurals, explicitly cautioning against widespread RPCA adoption due to its safety and staffing requirements⁸.

Despite its limited analgesic depth, many women remain highly satisfied with RPCA for reasons including autonomy and less invasiveness. In a post-RESPITE trial survey, most women indicated willingness to choose RPCA again in future deliveries, even when pain relief was incomplete⁶⁸.

Implementing RPCA demands careful organization and resource allocation. Continuous one-on-one monitoring by trained personnel, strict respiratory surveillance, and clearly defined protocols are mandatory. The study by Logtenberg et al. (2019) illustrates that serious adverse events, including apnea, desaturation and even cardiac arrest, continue to occur despite national SOPs and training efforts. Although all cases resolved without lasting harm, the authors stress that RPCA entails a non-negligible risk of severe respiratory compromise, especially when protocols are not strictly followed. These findings reinforce the position that RPCA should only be used in facilities with the capacity to provide continuous bedside monitoring, trained personnel, and immediate respiratory support⁷². As Van de Velde & Carvalho (2016) noted, such infrastructure is not universally available, and without it, risks increase substantially⁸. Financially, while NICE (2023) suggests that RPCA might be cost-effective under certain conditions (e.g., fewer antiemetics, NICU admissions), accounting for necessary staffing and monitoring may bring its overall cost closer to that of epidural programs^{9,34}.

Despite considerable progress, several areas require further study. First, large, high-quality trials are needed to directly compare RPCA with epidural analgesia and other PCA methods across diverse populations. Identifying subgroups (e.g., multiparous women, women with prior cesareans) who might benefit most from RPCA remains an important goal. Preliminary findings in special populations (e.g., preeclamptic women, El-Kerdawy et al., 2010) are encouraging but underpowered⁷³.

Second, optimal RPCA dosing strategies remain to be established. Cai et al. (2023) suggested that higher bolus doses (50 µg) might improve analgesia without increasing adverse events, but additional data are needed to confirm this¹⁷.

Third, implementation research is essential to develop best practices for RPCA⁷⁴. Initiatives

like the RemiPCA SAFE project advocate for standardized auditing and reporting. Technological innovations—such as "smart" pumps adjusting doses based on vital signs—may further enhance safety, although vigilance by skilled personnel remains irreplaceable^{16,41}.

Conclusion

Based on current evidence, remifentanil patientcontrolled analgesia (RPCA) provides superior pain relief and higher maternal satisfaction than traditional intramuscular opioids, though it remains inferior to neuraxial techniques in terms of analgesic depth. Satisfaction may nonetheless be high in certain patients—for example, those valuing autonomy, rapid onset of analgesia, and self-management. In selected populations, RPCA can reduce the need for epidural conversion, underscoring its utility as a second-line option. While maternal respiratory events are frequent, they are typically self-limiting; however, rare cases of severe respiratory depression with maternal cardiac arrest and emergency perimortem caesarean delivery have been reported. Neonatal outcomes appear comparable to those observed with other analgesic methods, although caution remains warranted when RPCA is used close to delivery. RPCA should not be viewed as interchangeable with neuraxial techniques nor as universally applicable, but when implemented with rigorous safety protocols, it can serve as a valuable alternative in well-equipped obstetric settings.

Acknowledgments: The author thanks Prof. Marc Van de Velde for his expert supervision and constructive feedback during the development of this manuscript.

Funding: No external funding was received for this work

Conflicts of Interest: The author declares no conflicts of interest.

Data Sharing Statement: Not applicable. This narrative review does not involve the generation or analysis of primary research data.

References

- 1. Li J, Cai J, Li J, Li Z. Efficacy of Remifentanil Intravenous Patient-Controlled Analgesia in Singleton Parturients During the Second Stage of Labor: A Single-Arm, Prospective Study. Int Med Case Rep J. 2023;16:673–8.
- 2. Blair JM, Dobson GT, Hill DA, McCracken GR, Fee JPH. Patient controlled analgesia for labour: A comparison of remifentanil with pethidine. Anaesthesia. 2005 Jan;60(1):22–7.
- Freeman LM, Bloemenkamp KW, Franssen MT, Papatsonis DN, Hajenius PJ, van Huizen ME, et al. Remifentanil patient controlled analgesia versus epidural analgesia in labour. A multicentre randomized controlled trial [Internet]. 2012.

- 4. Ng TKT, Cheng BCP, Chan WS, Lam KK, Chan MTV. A double-blind randomised comparison of intravenous patient-controlled remifentanil with intramuscular pethidine for labour analgesia. Anaesthesia. 2011 Sep;66(9):796–801.
- Schnabel A, Hahn N, Broscheit J, Muellenbach RM, Rieger L, Roewer N, et al. Remifentanil for labour analgesia: a meta-analysis of randomised controlled trials. Eur J Anaesthesiol [Internet]. 2012 Apr [cited 2025 Apr 22];29(4):177–85. Available from: https://pubmed.ncbi. nlm.nih.gov/22273829/
- Douma MR, Middeldorp JM, Verwey RA, Dahan A, Stienstra R. A randomised comparison of intravenous remifentanil patient-controlled analgesia with epidural ropivacaine/sufentanil during labour. Int J Obstet Anesth. 2011 Apr;20(2):118–23.
- Zhang P, Yu Z, Zhai M, Cui J, Wang J. Effect and Safety of Remifentanil Patient-Controlled Analgesia Compared with Epidural Analgesia in Labor: An Updated Meta-Analysis of Randomized Controlled Trials. Gynecol Obstet Invest [Internet]. 2021 Jul 1 [cited 2025 Apr 12];86(3):231–8. Available from: https://pubmed.ncbi.nlm. nih.gov/34192701/
- 8. Van De Velde M, Carvalho B. Remifentanil for labor analgesia: An evidence-based narrative review. Vol. 25, International Journal of Obstetric Anesthesia. Churchill Livingstone; 2016. p. 66–74.
- Evidence reviews for remifentanil patient-controlled analgesia. Evidence reviews for remifentanil patientcontrolled analgesia: Intrapartum care: Evidence review D [Internet]. 2023 [cited 2025 Apr 11];(NICE Guideline, No. 235). Available from: https://www.ncbi.nlm.nih.gov/books/ NBK596254/
- Roelants F, De Franceschi E, Veyckemans F, Lavand'homme P. Obstetrical and Pediatric Anesthesia Patient-controlled intra-venous analgesia using remifentanil in the parturient.
- Evron S, Glezerman M, Sadan O, Boaz M, Ezri T. Remifentanil: A novel systemic analgesic for labor pain. Anesth Analg. 2005 Jan;100(1):233–8.
- 12. Volikas I, Butwick A, Wilkinson C, Pleming A, Nicholson G. Maternal and neonatal side-effects of remifentanil patient-controlled analgesia in labour. Br J Anaesth. 2005;95(4):504–9.
- 13. Thorbiörnson A, da Silva Charvalho P, Gupta A, Stjernholm YV. Duration of labor, delivery mode and maternal and neonatal morbidity after remifentanil patient-controlled analgesia compared with epidural analgesia. Eur J Obstet Gynecol Reprod Biol X. 2020 Apr 1;6.
- 14. Melber A, Girard T, Baeriswyl M, Knessl P, Savoldelli G. Remifentanil patient-controlled analgesia for labour: learning points from a registry. Vol. 27, International Journal of Obstetric Anesthesia. Churchill Livingstone; 2016. p. 89–90.
- 15. Van de Velde M. Controversy. Remifentanil patient-controlled analgesia should be routinely available for use in labour. Int J Obstet Anesth [Internet]. 2008 Oct [cited 2025 Apr 11];17(4):339–42. Available from: https://pubmed.ncbi.nlm.nih.gov/18617386/
- Rehberg B, Wickboldt N, Juillet C, Savoldelli G. Can remifentanil use in obstetrics be improved by optimal patient-controlled analgesia bolus timing? Br J Anaesth. 2015 Feb 1;114(2):281–9.
- 17. Cai M, Liu J, Lei XF, Li YL, Yu J. Remifentanil at a Relatively Elevated Dose in Active Phase is Safe and More Suitable Than Fixed Lower Dose for Intravenous Labor Analgesia. J Pain Res. 2023;16:2543–52.
- 18. Hill D. Remifentanil patient-controlled analgesia should be routinely available for use in labour. Int J Obstet Anesth. 2008;17(4):336–9.
- Li H, Li H, Yu Y, Lu Y. Clinical study on the effect of remifentanil patient-controlled intravenous labor analgesia compared to patient-controlled epidural labor analgesia. Ginekol Pol. 2023;94(7):544–51.

- Douma MR, Verwey RA, Kam-Endtz CE, Van Der Linden PD, Stienstra R. Obstetric analgesia: A comparison of patient-controlled meperidine, remifentanil, and fentanyl in labour. Br J Anaesth. 2010;104(2):209–15.
- Logtenberg SLM, Oude Rengerink K, Verhoeven CJ, Freeman LM, van den Akker ESA, Godfried MB, et al. Labour pain with remifentanil patient-controlled analgesia versus epidural analgesia: a randomised equivalence trial. BJOG. 2017 Mar 1;124(4):652–60.
- Jost A, Blagus R, Ban B, Kamenik M. Effect-site concentration of remifentanil during patient-controlled analgesia in labour. Int J Obstet Anesth. 2015;24(3):230–6.
- Volmanen PVE, Akural EI, Raudaskoski T, Ranta P, Tekay A, Ohtonen P, et al. Timing of intravenous patientcontrolled remifentanil bolus during early labour. Acta Anaesthesiol Scand. 2011 Apr;55(4):486–94.
- Jost A, Ban B, Kamenik M. Modified patient-controlled remifentanil bolus delivery regimen for labour pain. In: Anaesthesia. 2013. p. 245–52.
- Balcioglu O, Akin S, Demir S, Aribogan A. Patient-controlled intravenous analgesia with remifentanil in nulliparous subjects in labor. Expert Opin Pharmacother [Internet]. 2007 Dec [cited 2025 Apr 24];8(18):3089–96. Available from: https://pubmed.ncbi.nlm.nih.gov/18035955/
- Wilson MJA, MacArthur C, Hewitt CA, Handley K, Gao F, Beeson L, et al. Intravenous remifentanil patient-controlled analgesia versus intramuscular pethidine for pain relief in labour (RESPITE): an open-label, multicentre, randomised controlled trial. The Lancet. 2018 Aug 25;392(10148):662– 72.
- Marwah R, Hassan S, Carvalho JCA, Balki M. Remifentanil versus fentanyl for intravenous patient-controlled labour analgesia: An observational study. Canadian Journal of Anesthesia. 2012 Mar;59(3):246–54.
- 28. Stocki D, Matot I, Einav S, Eventov-Friedman S, Ginosar Y, Weiniger CF. A randomized controlled trial of the efficacy and respiratory effects of patient-controlled intravenous remifentanil analgesia and patient-controlled epidural analgesia in laboring women. Anesth Analg. 2014 Mar;118(3):589–97.
- Sügür T, Kizilates E, Kizilates A, Inanoglu K, Karsli B. Labor analgesia: Comparison of epidural patient-controlled analgesia and intravenous patient-controlled analgesia. Agri. 2020;32(1):8–18.
- Frauenfelder S, Van Rijn R, Radder CM, De Vries MC, Dijksman LM, Godfried MB. Patient satisfaction between remifentanil patient-controlled analgesia and epidural analgesia for labor pain. Acta Obstet Gynecol Scand. 2015 Sep 1;94(9):1014–21.
- Freeman LM, Bloemenkamp KW, Franssen MT, Papatsonis DN, Hajenius PJ, Hollmann MW, et al. Patient controlled analgesia with remifentanil versus epidural analgesia in labour: Randomised multicentre equivalence trial. BMJ (Online). 2015 Feb 23;350.
- 32. Blair JM, Hill DA, Fee JPH. Patient-controlled analgesia for labour using remifentanil: A feasibility study. Br J Anaesth. 2001;87(3):415–20.
- Stourac P, Kosinova M, Harazim H, Huser M, Janku P, Littnerova S, et al. The analgesic efficacy of remifentanil for labour. Systematic review of the recent literature. Vol. 160, Biomedical Papers. PALACKY UNIV; 2016. p. 30–8.
- 34. Freeman L, Middeldorp J, Van Den Akker E, Oudijk M, Bax C, Van Huizen M, et al. An economic analysis of patient controlled remifentanil and epidural analgesia as pain relief in labour (RAVEL trial); A randomised controlled trial. PLoS One. 2018 Oct 1;13(10).
- 35. Jelting Y, Weibel S, Afshari A, Pace NL, Jokinen J, Artmann T, et al. Patient-controlled analgesia with remifentanil vs. alternative parenteral methods for pain management in labour: a Cochrane systematic review. Vol. 72, Anaesthesia. Blackwell Publishing Ltd; 2017. p. 1016–28.

- 36. Lei X, Yu Y, Li M, Fang P, Gan S, Yao Y, et al. The efficacy and safety of remifentanil patient-controlled versus epidural analgesia in labor: A meta-analysis and systematic review. PLoS One. 2022 Dec 1;17(12 December).
- 37. Ismail MT, Hassanin MZ. Neuraxial analgesia versus intravenous remifentanil for pain relief in early labor in nulliparous women. Arch Gynecol Obstet. 2012 Dec;286(6):1375–81.
- 38. Lin R, Tao Y, Yu Y, Xu Z, Su J, Liu Z. Intravenous remifentanil versus epidural ropivacaine with sufentanil for labour analgesia: A retrospective study. PLoS One. 2014 Nov 11;9(11).
- 39. Wydall S, Danaja Zolger F, Owolabi FA, Nzekwu FB, Onwochei FD, Desai FN, et al. Comparison of different delivery modalities of epidural analgesia and intravenous analgesia in labour: a systematic review and network meta-analysis. Canadian Journal of Anesthesia/Journal canadien d'anesthésie [Internet]. 2023;70:406–42. Available from: https://doi.org/10.1007/s12630-
- 40. Markova L, Lucovnik M, Verdenik I, Stopar Pintarič T. Delivery mode and neonatal morbidity after remifentanil-PCA or epidural analgesia using the Ten Groups Classification System: A 5-year single-centre analysis of more than 10 000 deliveries. European Journal of Obstetrics and Gynecology and Reproductive Biology. 2022 Oct 1;277:53–6.
- 41. Weibel S, Jelting Y, Afshari A, Pace NL, Eberhart LHJ, Jokinen J, et al. Patient-controlled analgesia with remifentanil versus alternative parenteral methods for pain management in labour. Vol. 2017, Cochrane Database of Systematic Reviews. John Wiley and Sons Ltd; 2017.
- 42. Leong WL, Sultana R, Han NLR, Sia ATH, Sng BL. Evaluation of vital signs-controlled, patient-assisted intravenous analgesia (VPIA) using remifentanil for labor pain. Vol. 75, Journal of Clinical Anesthesia. Elsevier Inc.; 2021.
- 43. Messmer AA, Potts JM, Orlikowski CE. A prospective observational study of maternal oxygenation during remifentanil patient-controlled analgesia use in labour. Anaesthesia. 2016 Feb 1;71(2):171–6.
- 44. Balki M, Kasodekar S, Mbbs SD, Bernstein P, Carvalho JCA. Remifentanil patient-controlled analgesia for labour: optimizing drug delivery regimens. Can J Anaesth [Internet]. 2007 Aug [cited 2025 Apr 24];54(8):626–33. Available from: http://www.ncbi.nlm.nih.gov/pubmed/27771888
- 45. Bonner JC, McClymont W. Respiratory arrest in an obstetric patient using remifentanil patient-controlled analgesia. Anaesthesia. 2012 May;67(5):538–40.
- 46. Blajic I, Zagar T, Semrl N, Umek N, Lucovnik M, Pintaric TS. Analgesic efficacy of remifentanil patient-controlled analgesia versus combined spinal-epidural technique in multiparous women during labour. Ginekol Pol. 2021;92(11):797–803.
- 47. Douma MR, Stienstra R, Middeldorp JM, Arbous MS, Dahan A. Differences in maternal temperature during labour with remifentanil patient-controlled analgesia or epidural analgesia: a randomised controlled trial. Int J Obstet Anesth. 2015 Nov 1;24(4):313–22.
- 48. Marr R, Hyams J, Bythell V. Cardiac arrest in an obstetric patient using remifentanil patient-controlled analgesia. Anaesthesia. 2013 Mar;68(3):283–7.
- 49. Knapp C, Bhatia K, Columb M, Elriedy M. Remifentanil patient-controlled analgesia for labour in pregnant patients with heart disease. Vol. 55, International Journal of Obstetric Anesthesia. Churchill Livingstone; 2023.
- 50. Volikas I, Male D. A comparison of pethidine and remifentanil patient-controlled analgesia in labour. Int J Obstet Anesth. 2001;10(2):86–90.
- 51. Tveit TO, Halvorsen A, Seiler S, Rosland JH. Efficacy and side effects of intravenous remifentanil patient-controlled analgesia used in a stepwise approach for

- labour: An observational study. Int J Obstet Anesth. 2013 Jan;22(1):19–25.
- 52. Murray H, Hodgkinson P, Hughes D. Remifentanil patient-controlled intravenous analgesia during labour: a retrospective observational study of 10 years' experience. Int J Obstet Anesth. 2019 Aug 1;39:29–34.
- 53. Jia Z, Li Y, Jia H, Ren J, Xie N. Curative effect of remifentanil on labor analgesia in newborns. Journal of Maternal-Fetal and Neonatal Medicine [Internet]. 2020 Jun 2 [cited 2025 Apr 24];33(11):1913–8. Available from: https://pubmed.ncbi.nlm.nih.gov/30849250/
- 54. Konefał H, Jaskot B, Czeszyńska MB, Pastuszka J. Remifentanil patient-controlled analgesia for labor -Monitoring of newborn heart rate, blood pressure and oxygen saturation during the first 24 hours after delivery. Archives of Medical Science. 2013 Aug;9(4):697–702.
- 55. Lucovnik M, Verdenik I, Stopar Pintaric T. Intrapartum Cesarean Section and Perinatal Outcomes after Epidural Analgesia or Remifentanil-PCA in Breech and Twin Deliveries. Medicina (Lithuania). 2023 Jun 1;59(6).
- 56. Van De Velde M. Patient-controlled intravenous analgesia remifentanil for labor analgesia: Time to stop, think and reconsider. Vol. 28, Current Opinion in Anaesthesiology. Lippincott Williams and Wilkins; 2015. p. 237–9.
- 57. Van De Velde M. Remifentanil patient-controlled intravenous analgesia for labor pain relief: Is it really an option to consider? Vol. 124, Anesthesia and Analgesia. Lippincott Williams and Wilkins; 2017. p. 1029–31.
- 58. Weiniger CF, Carvalho B, Stocki D, Einav S. Analysis of physiological respiratory variable alarm alerts among laboring women receiving remifentanil. Anesth Analg. 2017;124(4):1211–8.
- 59. Melber AA, Jelting Y, Huber M, Keller D, Dullenkopf A, Girard T, et al. Remifentanil patient-controlled analgesia in labour: six-year audit of outcome data of the RemiPCA SAFE Network (2010–2015). Int J Obstet Anesth. 2019 Aug 1:39:12–21.
- Volmanen P, Sarvela J, Akural EI, Raudaskoski T, Korttila K, Alahuhta S. Intravenous remifentanil vs. epidural levobupivacaine with fentanyl for pain relief in early labour: A randomised, controlled, double-blinded study. Acta Anaesthesiol Scand. 2008 Feb;52(2):249–55.
- 61. Birnbach DJ, Volmanen P, Akural EI, Raudaskoski T, Alahuhta S. Obstetric anesthesia section editor-. Remifentanil in Obstetric Analgesia: A Dose-Finding Study.
- 62. Güneş S, Türktan M, Güleç ÜK, Hatipoğlu Z, Ünlügenç H, Işık G. Doğum analjezisi İçin İki farklı yöntem ile uygulanan hasta kontrollü remifentanilin (bolus ve bolus+İnfüzyon) İntramüsküler meperidin ile karşılaştırılması. Turk Anesteziyoloji ve Reanimasyon Dernegi Dergisi. 2014;42(5):264–9.
- 63. Karadjova D, Shosholcheva M, Ivanov E, Sivevski A, Kjaev I, Kartalov A, et al. Side Effects of Intravenous Patient-Controlled Analgesia with Remifentanil Compared with Intermittent Epidural Bolus for Labour Analgesia A Randomized Controlled Trial. Prilozi. 2019 Dec 1;40(3):99–108.

- 64. Tveit TO, Seiler S, Halvorsen A, Rosland JH. Labour analgesia: A randomised, controlled trial comparing intravenous remifentanil and epidural analgesia with ropivacaine and fentanyl. Eur J Anaesthesiol [Internet]. 2012 Mar [cited 2025 Apr 24];29(3):129–36. Available from: https://pubmed.ncbi.nlm.nih.gov/22249153/
- 65. Kranke P, Girard T, Lavand'homme P, Melber A, Jokinen J, Muellenbach RM, et al. Must we press on until a young mother dies? Remifentanil patient controlled analgesia in labour may not be suited as a "poor man's epidural." BMC Pregnancy Childbirth. 2013 Jul 2;13.
- 66. Melber AA. Remifentanil patient-controlled analgesia (PCA) in labour – in the eye of the storm. Vol. 74, Anaesthesia. Blackwell Publishing Ltd; 2019. p. 277–9.
- 67. Liu ZQ, Chen X Bin, Li HB, Qiu MT, Duan T. A comparison of remifentanil parturient-controlled intravenous analgesia with epidural analgesia: A meta-analysis of randomized controlled trials. Anesth Analg. 2014 Mar;118(3):598–603.
- 68. Moran VH, Thomson G, Cook J, Storey H, Beeson L, Macarthur C, et al. Qualitative exploration of women's experiences of intramuscular pethidine or remifentanil patient-controlled analgesia for labour pain. BMJ Open. 2019 Dec 23;9(12).
- 69. Thurlow JA, Laxton CH, Dick A, Waterhouse P, Sherman L, Goodman NW. Remifentanil by patient-controlled analgesia compared with intramuscular meperidine for pain relief in labour. Br J Anaesth. 2002;88(3):374–8.
- 70. Lu G, Yao W, Chen X, Zhang S, Zhou M. Remifentanil patient-controlled versus epidural analgesia on intrapartum maternal fever: A systematic review and meta-analysis. Vol. 20, BMC Pregnancy and Childbirth. BioMed Central Ltd.; 2020.
- Ohashi Y, Baghirzada L, Sumikura H, Balki M. Remifentanil for labor analgesia: A comprehensive review. Vol. 30, Journal of Anesthesia. Springer Tokyo; 2016. p. 1020–30.
- 72. Logtenberg SLM, Vink ML, Godfried MB, Beenakkers ICM, Schellevis FG, Mol BW, et al. Serious adverse events attributed to remifentanil patient-controlled analgesia during labour in The Netherlands. Int J Obstet Anesth. 2019 Aug 1;39:22–8.
- El-Kerdawy H, Farouk A. Labor Aanalgesia In Preeclampsia: Remifentanil patient controlled intravenous analgesia versus epidural analgesia. A. J Anesth. 20(4):2010.
- 74. Shen MK, Wu ZF, Zhu AB, He LL, Shen XF, Yang JJ, et al. Remifentanil for labour analgesia: A double-blinded, randomised controlled trial of maternal and neonatal effects of patient-controlled analgesia versus continuous infusion. Anaesthesia. 2013 Mar;68(3):236–44.

doi.org/10.56126/76.4.38